机器阅读理解(MRC)和问答(QA)在信息抽取中的应用

一 机器阅读理解(MRC)、问答系统(QA)与信息抽取

最近实体关系抽取任务和命名实体识别任务的SOTA模型排行榜中,有很多模型使用到了机器阅读理解(MRC)和问答系统(QA)中思想和方法,如HBT、ETL-span、Multi-turn QA和BERT_MRC等,MRC和QA中的思想和方法的使用,让这些模型相比于传统方法有很大提升。

在实体关系抽取任务中,最新的一些模型,如HBT和ETL-span,用到了MRC中经常使用的指针网络方法,通过多层标注序列解决实体重叠问题;Multi-turn QA则使用了问答系统的思想,通过问答的形式一步一步抽取出主体、客体和关系,这些模型在多个数据集上都达到了SOTA效果。相比于传统的使用LSTM+CRF抽取特征做序列标注,这些借鉴了MRC和QA技术的模型,无论是在抽取结果的准确性还是对重叠实体关系的召回率方面,都有大幅度的提升。

而在命名实体识别任务中,也有像BERT_MRC这样的模型,同时融合了MRC和QA领域的诸多思想方法,在多个数据集上达到了SOTA效果。

本文以信息抽取为核心,主要探讨一下MRC和QA中经常使用到的思想方法在信息抽取任务(包括实体关系抽取和命名实体识别)中的应用。

二 MRC概述

在分析MRC和QA在IE中的应用之前,先对MRC做一个简单的概述,由于我对QA了解的不多,就不详细介绍QA了,只分析一下QA中的一些方法是怎么应用到信息抽取中的。

MRC概述

Neural Machine Reading Comprehension: Methods and Trends是一篇MRC领域的综述论文,这篇论文对MRC领域的任务目标,使用到的各种方法和思想和发展前景做了非常详细的描述。这里摘取其中一部分对MRC做一个简要的介绍,如果想对MRC有更深入的了解,推荐先去认真阅读一下这篇论文。

1 MRC的发展历程

MRC的任务是让机器根据给定的内容回答问题。在1970年代MRC就已经被提出,但是,由于那时的数据集规模都比较小,而且主要使用基于规则的方法,所以性能很差,难以投入实用。这一情况在深度学习方法投入使用之后有了改观。基于深度学习方法的机器阅读理解,称为神经机器阅读理解,目前正在迅速发展。

在这里插入图片描述

上图是2015年-2018年期间,和MRC领域的各个细分任务相关的论文数量,可以看出,最近几年MRC领域的论文数呈几何级数式增长,这一领域正在迅速发展。

2 任务&评测标准

MRC的任务根据答案形式可以分为四类:完形填空、多项选择、片段抽取、自由作答

2.1 完形填空

给定上下文 C C C ,一个词或实体 a ( a ∈ C ) a(a∈C) a(aC) 被移除,完形填空任务要求模型使用正确的词或实体进行填空,最大化条件概率 P ( a ∣ C − { a } ) P(a|C-\{a\}) P(aC{ a})

在这里插入图片描述

2.2 多项选择

给定上下文 C C C,问题 Q Q Q,候选答案列表 A = { a 1 , a 2 . . . , a n } A=\{a_1,a_2...,a_n\} A={ a1,a2...,an},多项选择任务要求模型从A中选择正确的答案 a i a_i ai,最大化条件概率 P ( a i ∣ C , Q , A ) P(a_i|C,Q,A) P(

  • 10
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值