通过问题生成与回答进行事件抽取(ACL2023)

Event Extraction as Question Generation and Answering

一、写作动机:

1、最近在事件抽取方面的工作已经将该任务重新定义为问题回答(QA),并取得了很好的结果。然而,这些问题通常是基于固定的模板,它们很少利用上下文信息,如相关的论元。此外,以前基于QA的方法很难处理对于相同角色存在多个论元的情况。

2、对于基于QA的事件抽取,一个包含更丰富的上下文信息的问题,如其他事件论元,可以产生更好的结果。比如下图1,Who used jets in the attack in hills?这个问题显然比Who was the attacking agent?要好。

二、本文贡献:

提出了QGA-EE框架,它包括问题生成(QG)部分和问题回答(QA)部分。其中,QG用于生成一个基于目标论元和角色的上下文感知问题,QA用于回答上下文问题要提取的事件论元。此外,作者还设计了动态模板来生成用于QG模型训练的真实的上下文感知问题。

三、模型:

本文的模型框架也如图1所示,它只专注于事件论元抽取,但是可以与任何事件触发标记器(?)配对来执行端到端的事件抽取。

3.1QG模型:

QG模型用来生成基于输入句子和目标角色的上下文感知问题,它基于序列到序列架构(比如BART/T5)。为了训练QG模型,作者为ACE ontology中的每个角色设计了多个动态模板,每个模板都包含了其他论元角色的不同组合。比如下表1是对于ACE中的Conflict.Attack事件中的攻击者角色设计的8个模板。

以图1中的事件为例,由于它没有提到目标角色,我们可以根据模板我呢提的到4个关于攻击角色的候选问题:

1)Who was the attacking agent?

2)Who used jets in the attack?

3)Who made the attack in hills?

4)Who used jets in the attack in hills?

在训练QG模型时,应该选择包含最多上下文信息的问题,那么对于图1,应该选择问题4)。 

3.2QA模型:

本文的QA模型基于序列到序列架构(如Bart/T5),并且直接生成答案字符串,这允许预测与同一角色关联的多个事件论元。输入输出的示例如下:

后处理:作者将输出分成一个候选项列表(按“;”),并通过与原始句子进行精确匹配来检索带有偏移量的论元。动态地更改搜索的起始位置,以保持检索到的事件论元的顺序。与QG模型不同的是,在训练过程中QA模型使用所有可能的问题作为数据增强的输入。

四、实验:

在ACE2005数据集上,使用了两个变体模型——QGA-EEBART和QGA-EET5进行实验。

4.1在事件论元抽取方面的性能:

4.2在事件抽取方面的性能:

4.3消融实验:

五、分析:

1、QGA-EE T5模型比起SOTA,生成问题的平均长度更长,包含了更多的上下文。

2、产生错误的原因:

a、由于QG模型产生了错误的问题。

b、由于QA输出结果不匹配。

c、由于实体消解引起的错误。

d、由于预测不明确导致的错误。

六、局限性:

1、动态模板的设计比较困难。

2、如果一句话中包含多个相同的实体的提及(包括拼写相同指代不同),QGA-EE模型总是将提及第一次出现在句子中的位置作为所提取目标的偏移量。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值