YOLOv8: 快速而准确的对象检测
背景
对象检测是计算机视觉中的一个关键任务,它可以帮助我们在图像或视频中识别和定位感兴趣的物体。其中,YOLO(You Only Look Once)系列是一类非常出色的实时对象检测算法,以其快速和准确的特点而闻名。YOLOv8是YOLO系列的最新版本,由Ultralytics开发并开源在GitHub上。使用YOLOv8,您可以快速准确地检测图像和视频中的各种物体,为您的计算机视觉项目带来强大的支持。
from ultralytics import YOLO
什么是YOLOv8?
YOLOv8是一个基于PyTorch的端到端对象检测模型,它能够快速准确地检测图像和视频中的各种物体。与传统的对象检测算法相比,YOLOv8具有更快的推理速度和更高的检测精度。它可以用于各种应用场景,如智能监控、自动驾驶、机器人视觉等。
安装YOLOv8
您可以使用pip安装YOLOv8:
pip install ultralytics
简单的库函数使用方法
- 加载预训练模型
from ultralytics import YOLO
# 加载预训练的YOLOv8模型
model = YOLO('yolov8n.pt')
这段代码使用YOLO类加载了一个预训练的YOLOv8模型。您可以选择不同的模型大小,如yolov8s.pt
、yolov8m.pt
等,以平衡性能和精度。
- 检测图像中的物体
from ultralytics import YOLO
# 加载模型
model = YOLO('yolov8n.pt')
# 检测图像中的物体
results = model.predict('image.jpg')
# 显示检测结果
results[0].plot()
这段代码使用加载的YOLOv8模型对一张图像进行物体检测,并使用plot()
函数显示检测结果。
- 检测视频中的物体
from ultralytics