当人工智能遇上安全
文章平均质量分 97
该系列详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。
Eastmount
北理本硕,武大博士。欢迎加入“网络攻防和AI安全之家”和“数智人文与文本挖掘”知识星球!自幼受贵州大山的熏陶,养成了诚实质朴的性格。经过寒窗苦读,考入BIT,为完成自己的教师梦,放弃IT、航天等工作,成为贵州高校的一名教师,并想把自己所学所感真心传授给自己的学生,帮助更多陌生人。已发表论文30余篇,撰写专著8部,主持课题6项,感恩遇到的每一位读者,且看且珍惜。
贵州纵美路迢迢,为负劳心此一遭。收得破书三四本,也堪将去教尔曹。娜美人生,醉美生活。他和她经历风雨,慢慢变老。
展开
-
[当人工智能遇上安全] 14.借助大语言模型GPT-4辅助恶意代码动态分析
《当人工智能遇上安全》系列将详细介绍人工智能与安全相关的论文、实践,并分享各种案例。这篇文章将介绍由广东省智能信息处理重点实验室发布的一项研究成果——借助大语言模型GPT-4辅助恶意代码动态分析。基础性文章,希望对您有所帮助!原创 2024-04-26 22:39:59 · 1402 阅读 · 0 评论 -
[当人工智能遇上安全] 13.威胁情报实体识别 (3)利用keras构建CNN-BiLSTM-ATT-CRF实体识别模型
前文讲解如何实现威胁情报实体识别,利用BiLSTM-CRF算法实现对ATT&CK相关的技战术实体进行提取,是安全知识图谱构建的重要支撑。这篇文章将详细结合如何利用keras和tensorflow构建基于注意力机制的CNN-BiLSTM-ATT-CRF模型,并实现中文实体识别研究,同时对注意力机制构建常见错误进行探讨。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!原创 2024-04-09 17:55:38 · 1928 阅读 · 2 评论 -
[当人工智能遇上安全] 12.易学智能GPU搭建Keras环境实现LSTM恶意URL请求分类
这篇文章将简单讲解易学智能GPU搭建Keras环境的过程,并实现了LSTM文本分类的实验,本来想写Google Colab免费云,但看知乎评价也不太好(梯子常断网、时间限制、数据量小)。因此,选择一个评价较好的平台供大家学习(6块一小时),也希望大家推荐更好的平台,百度飞浆后续准备也学习下,希望这篇文章能解决自身电脑配置不足,需要GPU运行模型且服务器价格又不是太高的同学,加油!原创 2024-02-21 19:10:27 · 977 阅读 · 0 评论 -
[当人工智能遇上安全] 11.威胁情报实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解
前文讲解如何实现威胁情报实体识别,利用BiLSTM-CRF算法实现对ATT&CK相关的技战术实体进行提取,是安全知识图谱构建的重要支撑。这篇文章将以中文语料为主,介绍中文命名实体识别研究,并构建BiGRU-CRF模型实现。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!原创 2024-02-07 00:10:46 · 1960 阅读 · 0 评论 -
[当人工智能遇上安全] 10.威胁情报实体识别 (1)基于BiLSTM-CRF的实体识别万字详解
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。前文详细介绍如何学习提取的API序列特征,并构建深度学习算法实现恶意家族分类,这也是安全领域典型的任务或工作。这篇文章将讲解如何实现威胁情报实体识别,利用BiLSTM-CRF算法实现对ATT&CK相关的技战术实体进行提取,是安全知识图谱构建的重要支撑。。原创 2023-11-14 23:39:51 · 5346 阅读 · 10 评论 -
[当人工智能遇上安全] 9.基于API序列和深度学习的恶意家族分类实例详解
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。前文详细介绍如何学习提取的API序列特征,并构建机器学习算法实现恶意家族分类,这也是安全领域典型的任务或工作。这篇文章将讲解如何构建深度学习模型实现恶意软件家族分类,常见模型包括CNN、BiLSTM、BiGRU,结合注意力机制的CNN+BiLSTM。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!原创 2023-09-15 12:58:19 · 1950 阅读 · 0 评论 -
[当人工智能遇上安全] 8.基于API序列和机器学习的恶意家族分类实例详解
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将讲解如何学习提取的API序列特征,并构建机器学习算法实现恶意家族分类,这也是安全领域典型的任务或工作。基础性文章,希望对您有所帮助~原创 2023-09-06 09:45:18 · 2346 阅读 · 1 评论 -
[当人工智能遇上安全] 7.基于机器学习的安全数据集总结
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。为了更好的帮助大家从事安全领域机器学习和深度学习(AI+安全)相关的研究,这篇文章将分享安全相关的数据集供大家下载和实验,包括恶意URL、流量分析、域名检测、恶意软件、图像分类、垃圾邮件等,也欢迎大家留言推荐数据集供我补充。基础性文章,希望对您有所帮助~原创 2022-02-22 19:37:41 · 6044 阅读 · 2 评论 -
[当人工智能遇上安全] 6.基于机器学习的入侵检测和攻击识别——以KDD CUP99数据集为例
首先,祝大家1024程序员节快乐,祝CSDN越来越好,感谢大家十年的陪伴。基于机器学习的恶意代码检测方法一直是学界研究的热点。由于机器学习算法可以挖掘输入特征之间更深层次的联系,更加充分地利用恶意代码的信息,因此基于机器学习的恶意代码检测往往表现出较高的准确率,并且一定程度上可以对未知的恶意代码实现自动化的分析。下面让我们开始进行系统的介绍吧~原创 2021-10-24 13:19:55 · 29485 阅读 · 41 评论 -
[当人工智能遇上安全] 5.基于机器学习算法的主机恶意代码识别研究
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。前一篇文章普及了基于机器学习的恶意代码检测技术,主要参考郑师兄的视频总结,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。这篇文章将分享两篇论文,介绍机器学习是如何运用到恶意代码攻击中的,并谈谈自己的理解,后续深入研究尝试分享相关实验,目前还是小白一只。基础性文章,希望对您有所帮助,详见参考文献。原创 2021-09-27 18:53:06 · 9408 阅读 · 7 评论 -
[当人工智能遇上安全] 4.基于机器学习的恶意代码检测技术详解
《当人工智能遇上安全》系列将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等。前一篇文章普及了机器学习在安全领域的应用,并复现一个基于机器学习(逻辑回归)的恶意请求识别。这篇文章将详细分享基于机器学习的恶意代码检测技术,主要参考郑师兄的视频总结,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。同时,我再结合自己的经验进行扩充,详细分享了基于机器学习的恶意代码检测技术,基础性文章,希望对您有所帮助~原创 2021-09-22 19:23:31 · 8088 阅读 · 10 评论 -
[当人工智能遇上安全] 3.安全领域中的机器学习及机器学习恶意请求识别案例分享
《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,希望您喜欢。前一篇文章分享了张超大佬的两次报告,带领大家了解Fuzzing,第一篇是学术论文相关的“数据流敏感的漏洞挖掘方法”,第二篇是安全攻防实战相关的“智能软件漏洞攻防”。这篇文章将分享机器学习在安全领域的应用,并复现一个基于机器学习(逻辑回归)的恶意请求识别。本文参考学习了大神们的总结,并复现总结相关知识,参考文献见后。基础性入门文章,只希望对初学者有所帮助。原创 2021-09-19 22:54:24 · 8671 阅读 · 5 评论 -
[当人工智能遇上安全] 2.清华张超老师 - GreyOne: Discover Vulnerabilities with Data Flow Sensitive Fuzzing
前一篇文章将带领大家复习AI对抗样本技术,包括对抗样本白皮书、从NLP视角看机器学习模型安全、对抗文本TextBugger,并总结大佬们的分享。这篇文章将分享张超大佬的两次报告,第一篇是学术论文相关的“数据流敏感的漏洞挖掘方法”,第二篇是安全攻防实战相关的“智能软件漏洞攻防”。这些大佬是真的值得我们去学习,献上小弟的膝盖。基础性入门文章,希望对您有所帮助。原创 2021-09-18 21:14:28 · 6461 阅读 · 5 评论 -
[当人工智能遇上安全] 1.人工智能真的安全吗?浙大团队外滩大会分享AI对抗样本技术
作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。AI技术蓬勃发展,无论是金融服务、线下生活、还是医疗健康都有AI的影子,那保护好这些AI系统的安全是非常必要也是非常重要的。目前,AI安全是一个非常新的领域,是学界、业界都共同关注的热门话题,本论坛将邀请AI安全方面的专家,分享交流智能时代的功守道,推动和引领业界在AI安全领域的发展。原创 2021-09-07 11:56:07 · 8944 阅读 · 12 评论