
当人工智能遇上安全
文章平均质量分 97
该系列详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。
Eastmount
自幼受贵州大山的熏陶,养成了诚实质朴的性格。经过寒窗苦读,考入BIT,为完成自己的教师梦,放弃IT、航天等工作,成为贵财一名大学教师,并想把自己所学所感真心传授给自己的学生,帮助更多陌生人。现于武汉大学攻读博士学位。
贵州纵美路迢迢,为负劳心此一遭。收得破书三四本,也堪将去教尔曹。娜美人生,醉美生活。他和她经历风雨,慢慢变老。
展开
-
[当人工智能遇上安全] 9.基于API序列和深度学习的恶意家族分类实例详解
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。前文详细介绍如何学习提取的API序列特征,并构建机器学习算法实现恶意家族分类,这也是安全领域典型的任务或工作。这篇文章将讲解如何构建深度学习模型实现恶意软件家族分类,常见模型包括CNN、BiLSTM、BiGRU,结合注意力机制的CNN+BiLSTM。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!原创 2023-09-15 12:58:19 · 548 阅读 · 0 评论 -
[当人工智能遇上安全] 8.基于API序列和机器学习的恶意家族分类实例详解
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将讲解如何学习提取的API序列特征,并构建机器学习算法实现恶意家族分类,这也是安全领域典型的任务或工作。基础性文章,希望对您有所帮助~原创 2023-09-06 09:45:18 · 674 阅读 · 0 评论 -
[当人工智能遇上安全] 7.基于机器学习的安全数据集总结
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。为了更好的帮助大家从事安全领域机器学习和深度学习(AI+安全)相关的研究,这篇文章将分享安全相关的数据集供大家下载和实验,包括恶意URL、流量分析、域名检测、恶意软件、图像分类、垃圾邮件等,也欢迎大家留言推荐数据集供我补充。基础性文章,希望对您有所帮助~原创 2022-02-22 19:37:41 · 4612 阅读 · 2 评论 -
[当人工智能遇上安全] 6.基于机器学习的入侵检测和攻击识别——以KDD CUP99数据集为例
首先,祝大家1024程序员节快乐,祝CSDN越来越好,感谢大家十年的陪伴。基于机器学习的恶意代码检测方法一直是学界研究的热点。由于机器学习算法可以挖掘输入特征之间更深层次的联系,更加充分地利用恶意代码的信息,因此基于机器学习的恶意代码检测往往表现出较高的准确率,并且一定程度上可以对未知的恶意代码实现自动化的分析。下面让我们开始进行系统的介绍吧~原创 2021-10-24 13:19:55 · 26318 阅读 · 33 评论 -
[当人工智能遇上安全] 5.基于机器学习算法的主机恶意代码识别研究
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。前一篇文章普及了基于机器学习的恶意代码检测技术,主要参考郑师兄的视频总结,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。这篇文章将分享两篇论文,介绍机器学习是如何运用到恶意代码攻击中的,并谈谈自己的理解,后续深入研究尝试分享相关实验,目前还是小白一只。基础性文章,希望对您有所帮助,详见参考文献。原创 2021-09-27 18:53:06 · 7999 阅读 · 7 评论 -
[当人工智能遇上安全] 4.基于机器学习的恶意代码检测技术详解
《当人工智能遇上安全》系列将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等。前一篇文章普及了机器学习在安全领域的应用,并复现一个基于机器学习(逻辑回归)的恶意请求识别。这篇文章将详细分享基于机器学习的恶意代码检测技术,主要参考郑师兄的视频总结,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。同时,我再结合自己的经验进行扩充,详细分享了基于机器学习的恶意代码检测技术,基础性文章,希望对您有所帮助~原创 2021-09-22 19:23:31 · 6589 阅读 · 10 评论 -
[当人工智能遇上安全] 3.安全领域中的机器学习及机器学习恶意请求识别案例分享
《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,希望您喜欢。前一篇文章分享了张超大佬的两次报告,带领大家了解Fuzzing,第一篇是学术论文相关的“数据流敏感的漏洞挖掘方法”,第二篇是安全攻防实战相关的“智能软件漏洞攻防”。这篇文章将分享机器学习在安全领域的应用,并复现一个基于机器学习(逻辑回归)的恶意请求识别。本文参考学习了大神们的总结,并复现总结相关知识,参考文献见后。基础性入门文章,只希望对初学者有所帮助。原创 2021-09-19 22:54:24 · 7359 阅读 · 5 评论 -
[当人工智能遇上安全] 2.清华张超老师 - GreyOne: Discover Vulnerabilities with Data Flow Sensitive Fuzzing
前一篇文章将带领大家复习AI对抗样本技术,包括对抗样本白皮书、从NLP视角看机器学习模型安全、对抗文本TextBugger,并总结大佬们的分享。这篇文章将分享张超大佬的两次报告,第一篇是学术论文相关的“数据流敏感的漏洞挖掘方法”,第二篇是安全攻防实战相关的“智能软件漏洞攻防”。这些大佬是真的值得我们去学习,献上小弟的膝盖。基础性入门文章,希望对您有所帮助。原创 2021-09-18 21:14:28 · 5785 阅读 · 5 评论 -
[当人工智能遇上安全] 1.人工智能真的安全吗?浙大团队外滩大会分享AI对抗样本技术
作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。AI技术蓬勃发展,无论是金融服务、线下生活、还是医疗健康都有AI的影子,那保护好这些AI系统的安全是非常必要也是非常重要的。目前,AI安全是一个非常新的领域,是学界、业界都共同关注的热门话题,本论坛将邀请AI安全方面的专家,分享交流智能时代的功守道,推动和引领业界在AI安全领域的发展。原创 2021-09-07 11:56:07 · 7778 阅读 · 12 评论