
学习排序
Eastmount
北理本硕,武大博士。欢迎加入“网络攻防和AI安全之家”和“数智人文与文本挖掘”知识星球!自幼受贵州大山的熏陶,养成了诚实质朴的性格。经过寒窗苦读,考入BIT,为完成自己的教师梦,放弃IT、航天等工作,成为贵州高校的一名教师,并想把自己所学所感真心传授给自己的学生,帮助更多陌生人。已发表论文30余篇,撰写专著8部,主持课题6项,感恩遇到的每一位读者,且看且珍惜。
贵州纵美路迢迢,为负劳心此一遭。收得破书三四本,也堪将去教尔曹。娜美人生,醉美生活。他和她经历风雨,慢慢变老。
展开
-
【学习排序】 Learning to Rank 中Listwise关于ListNet算法讲解及实现
前一篇文章"Learning to Rank中Pointwise关于PRank算法源码实现"讲述了基于点的学习排序PRank算法的实现.该篇文章主要讲述Listwise Approach和基于神经网络的ListNet算法及Java实现.包括: 1.基于列的学习排序(Listwise)介绍 2.ListNet算法介绍 3.ListNet算法Java实现 LTR中单文档方法是将训练集里每一个文档当做一个训练实例,文档对方法是将同一个查询的搜索结果里任意两个文档对作为一个训练实例,原创 2015-02-05 22:19:33 · 29071 阅读 · 21 评论 -
【学习排序】 Learning to Rank中Pointwise关于PRank算法源码实现
讲述的就是Learning to Rank中Pointwise的认识及PRank算法的实现.主要从以下四个方面进行讲述: 1.学习排序(Learning to Rank)概念 2.基于点的排序算法(Pointwise)介绍 3.基于顺序回归(Ordinal Regression-based)的PRank排序算法 4.PRank算法Java\C++实现及总结同时讲述过程中遇到的困难及解决方法,希望文章对大家有所帮助,如果文章中有错误或不足之处!见谅~原创 2015-01-28 05:36:36 · 30243 阅读 · 41 评论 -
机器学习排序之Learning to Rank简单介绍
最近需要完成课程作业——分布式排序学习系统.它是在M/R、Storm或Spark架构上搭建分布式系统,并使用学习排序Pointwise、Pairwise和Listwise三大类算法实现对微软数据集(Microsoft Learning to Rank Datasets)进行学习排序,这篇文章是对其入门介绍.感觉很难啊~ 推荐&参考资料: 《Learning to Rank for Information Retrieval By:Tie-Yan Liu》转载 2015-01-03 21:50:25 · 49209 阅读 · 7 评论