机器学习
文章平均质量分 96
该专栏为机器学习相关知识,包括Python机器学习实现、算法原理及相关应用,希望对您有所帮助~
Eastmount
北理本硕,武大博士。欢迎加入“网络攻防和AI安全之家”和“数智人文与文本挖掘”知识星球!自幼受贵州大山的熏陶,养成了诚实质朴的性格。经过寒窗苦读,考入BIT,为完成自己的教师梦,放弃IT、航天等工作,成为贵州高校的一名教师,并想把自己所学所感真心传授给自己的学生,帮助更多陌生人。已发表论文30余篇,撰写专著8部,主持课题6项,感恩遇到的每一位读者,且看且珍惜。
贵州纵美路迢迢,为负劳心此一遭。收得破书三四本,也堪将去教尔曹。娜美人生,醉美生活。他和她经历风雨,慢慢变老。
展开
-
基于机器学习的安全数据集
为了更好的帮助大家从事安全领域机器学习和深度学习(AI+安全)相关的研究,这篇文章将分享安全相关的数据集供大家下载和实验,包括恶意URL、流量分析、域名检测、恶意软件、图像分类、垃圾邮件等,也欢迎大家留言推荐数据集供我补充。这是作者的系列网络安全自学教程,主要是关于网安工具和实践操作的在线笔记,特分享出来与博友共勉,希望您们喜欢。原创 2020-09-07 15:28:39 · 15129 阅读 · 15 评论 -
《统计自然语言处理》读书笔记 一.基础知识及概念介绍
最近准备学习自然语言处理相关的知识,推荐大家阅读《统计自然语言处理·宗成庆》和《Natural Language Processing with Python》,第一篇主要介绍的是NLP的基础知识和概念介绍,希望对大家有所帮助。一. 概念介绍二. 自然语言处理基本方法原创 2016-08-04 19:49:46 · 9169 阅读 · 2 评论 -
[SQL Server玩转Python] 一.安装环境及T-SQL调用python脚本
在开发项目过程中,更多的是通过Python访问SQL Server数据库接口,进行数据挖掘的操作;而SQL Server2016版本之后,嵌入了强大的R、Python、Machine Learning等功能,尤其是Python代码置于存储过程中,可以实现一些便捷数据分析功能。本系列文章主要讲解SQL Server 2017实现Python数据分析的文章,同时对比两者的优劣。第一篇文章主要讲解SQL Server开发Python环境的安装过程及基本的数据分析代码实现。基础性文章,自己也在不断学习中,希望对原创 2018-11-11 23:41:41 · 9573 阅读 · 0 评论 -
[SQL Server玩转Python] 二.T-SQL查询表格值及Python实现数据分析
本系列文章主要讲解SQL Server 2017实现Python数据分析的文章,同时对比两者的优劣。前一篇文章主要讲解SQL Server开发Python环境的安装过程及基本的数据分析代码实现,本文主要讲解T-SQL实现表的查询及简单的数据分析实验。基础性文章,该方面知识也较少,自己也仍在不断学习中,希望对你有所帮助。原创 2018-11-13 23:10:45 · 7503 阅读 · 1 评论 -
[SQL Server玩转Python] 三.SQL Server存储过程实现Python鸢尾花决策树训练及预测
本系列文章主要讲解SQL Server 2017实现Python数据分析的文章,同时对比两者的优劣。前两篇文章主要讲解SQL Server开发Python环境的安装过程,T-SQL实现表的查询及简单的数据分析实验。这篇文章通过存储过程实现Python鸢尾花数据分析,将训练和预测分离进行实验。本文是基础性文章,该方面知识较少,自己也仍在不断学习中,希望对你有所帮助。原创 2018-11-14 16:30:45 · 6776 阅读 · 0 评论 -
[转载] 机器学习科普文章:“一文读懂机器学习,大数据/自然语言处理/算法全有了”
PS:文章主要转载自CSDN大神"黑夜路人"的文章: http://blog.csdn.net/heiyeshuwu/article/details/43483655 本文主要对机器学习进行科普,包括机器学习的定义、范围、方法,包括机器学习的研究领域:模式识别、计算机视觉、语音识别、自然语言处理、统计学习和数据挖掘.这是一篇非常好的文章,尤其感学原文作者~转载 2015-02-09 19:06:35 · 15273 阅读 · 5 评论 -
[转载] 机器学习面试之算法思想简单梳理
前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大。 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺转载 2015-01-05 13:31:00 · 7772 阅读 · 0 评论 -
【学习排序】 Learning to Rank中Pointwise关于PRank算法源码实现
讲述的就是Learning to Rank中Pointwise的认识及PRank算法的实现.主要从以下四个方面进行讲述: 1.学习排序(Learning to Rank)概念 2.基于点的排序算法(Pointwise)介绍 3.基于顺序回归(Ordinal Regression-based)的PRank排序算法 4.PRank算法Java\C++实现及总结同时讲述过程中遇到的困难及解决方法,希望文章对大家有所帮助,如果文章中有错误或不足之处!见谅~原创 2015-01-28 05:36:36 · 30162 阅读 · 41 评论 -
【学习排序】 Learning to Rank 中Listwise关于ListNet算法讲解及实现
前一篇文章"Learning to Rank中Pointwise关于PRank算法源码实现"讲述了基于点的学习排序PRank算法的实现.该篇文章主要讲述Listwise Approach和基于神经网络的ListNet算法及Java实现.包括: 1.基于列的学习排序(Listwise)介绍 2.ListNet算法介绍 3.ListNet算法Java实现 LTR中单文档方法是将训练集里每一个文档当做一个训练实例,文档对方法是将同一个查询的搜索结果里任意两个文档对作为一个训练实例,原创 2015-02-05 22:19:33 · 28896 阅读 · 21 评论 -
机器学习排序之Learning to Rank简单介绍
最近需要完成课程作业——分布式排序学习系统.它是在M/R、Storm或Spark架构上搭建分布式系统,并使用学习排序Pointwise、Pairwise和Listwise三大类算法实现对微软数据集(Microsoft Learning to Rank Datasets)进行学习排序,这篇文章是对其入门介绍.感觉很难啊~ 推荐&参考资料: 《Learning to Rank for Information Retrieval By:Tie-Yan Liu》转载 2015-01-03 21:50:25 · 49083 阅读 · 7 评论