大模型评测【DeepSeek】|最新的DeepSeek-v3-0324相比旧版本提升了多少?哪方面提升最多?

DeepSeek-v3首发于2024年12月底,而最新版本发布于3月24日,即DeepSeek-v3-0324。官方也给出了在主流英文评测集上的前后效果对比,如下:

Model Performance

那么在中文上的效果提升多少呢?我们基于8大领域(300多个细分维度)的中文评测给出回答:

统计

deepseek-v3

deepseek-v3-0324

变化

总分

66.99

77.37

+15%

医疗

71.21

78.05

+10%

教育

77.04

85.46

+11%

金融

73.68

76.11

+3%

法律

39.57

61.50

+55%

行政公务

58.00

81.50

+41%

心理健康

56.00

64.62

+15%

推理与数学计算

81.08

86.25

+6%

语言与指令遵从

79.31

85.43

+8%

更多细分维度结果详见:https://github.com/jeinlee1991/chinese-llm-benchmark

从上表可知:

  • DeepSeek-v3-0324总分提高了15%,算是稳步提升。

  • 而在法律和行政公务领域却有超出预期的巨幅改进,涨幅分别高达55%、41%。

  • 相比之下,在金融领域却只有3%的微小提升。


关于大模型评测EasyLLM:https://easyllm.site

  1. 最全——全球最全大模型评测平台,已囊括200+大模型、300+评测维度

  2. 最新——每周更新大模型排行榜

  3. 最方便——无需注册/梯子,国内外各个大模型可一键评测

  4. 结果可见——所有大模型评测的方法、题集、过程、得分结果,可见可追溯

  5. 错题本——百万级大模型错题本

  6. 免费——为您的私有模型提供免费的全方位评测服务,欢迎私信

图片

### 特点与性能对比 DeepSeek-R1 和 DeepSeek-V3 是用于特定任务的两种不同版本的深度学习模型。虽然提供的引用材料中并未直接提及这两个具体模型,但从一般性的深度学习框架发展规律来看,可以推测出两者之间的可能区别和发展方向。 #### 1. 架构改进 通常情况下,后续版本(如 DeepSeek-V3)会在前一版的基础上进行架构优化。这种优化可能会体现在更高效的网络结构设计上,从而提高计算效率并减少参数量。对于 V3 来说,这可能是通过引入新的卷积操作、残差连接或其他创新机制实现的[^1]。 #### 2. 数据处理能力增强 随着技术的进步,新版本往往能够更好地适应更大规模的数据集以及更加复杂的数据特征。这意味着 DeepSeek-V3 可能支持更高分辨率输入图像或视频流,并且具备更强的学习能力和泛化表现,在面对未见过的数据时仍能保持良好效果。 #### 3. 性能提升 基于上述两点以及其他潜在的技术革新,预计 DeepSeek-V3 的整体性能会有所超越其前身 R1。特别是在精度方面,V3 应该能够在多个估指标下取得更好的成绩;而在速度上,则有望实现在不牺牲太多准确性的情况下加快推理过程。 ```python # 假设代码片段展示如何加载和测试两个模型 import torch from torchvision import models def load_model(version='R1'): if version == 'R1': model = models.resnet50(pretrained=True) # 这里仅作为示意,实际应替换为对应的DeepSeek模型 elif version == 'V3': model = models.efficientnet_b7(pretrained=True) # 同样仅为示意目的 return model.eval() model_r1 = load_model('R1') model_v3 = load_model('V3') # 测试部分省略... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值