llm
文章平均质量分 97
Easy数模
带你轻松学建模 【公众号:Easy数模】
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LangGraph实战指南:如何构建一个深度研究Agent
本文介绍了如何利用LangGraph构建深度研究代理(Deep Research Agent)。文章采用问题驱动方法,分析谷歌开源实现,展示如何将复杂研究流程建模为图结构。重点讲解了StateGraph的创建、节点定义和状态管理,通过生成查询、网络研究、结果评估和最终报告四个核心节点实现自主搜索-评估循环。该代理能动态判断信息充足性,决定继续搜索或生成带引用的报告,体现了LangGraph在复杂工作流编排中的优势。文章强调从实际代码入手,帮助读者掌握构建实用LLM代理的关键技术。原创 2025-08-16 13:15:05 · 971 阅读 · 0 评论 -
使用llm进行高级主题建模:通过利用 BERTopic 的表示模型和生成式 AI 深入探讨主题建模
本文详细解析了BERTopic这一基于Transformer架构的高性能主题建模工具。相比传统方法(如LDA、LSA),BERTopic通过模块化流程整合嵌入模型(Sentence Transformer)、降维模型(UMAP)和聚类模型(HDBSCAN)等组件,显著提升了建模效果和可解释性。文章重点展示了如何利用TF-IDF、KeyBERTInspired等优化主题表示,并通过可视化工具(主题分布、相似度热力图等)分析结果。BERTopic的优势在于支持灵活调整各组件参数,同时提供分层、时间序列等变体模型原创 2025-07-24 17:21:41 · 1823 阅读 · 0 评论
分享