请用归纳法证明以下定理:
对任意的正整数n,
1
2
+
2
2
+
3
2
+
⋯
+
n
2
=
n
(
2
n
+
1
)
(
n
+
1
)
6
1^2+2^2+3^2+\cdots+n^2=\frac{n(2n+1)(n+1)}{6}
12+22+32+⋯+n2=6n(2n+1)(n+1)
证明:
1.
n=1时,
1 = 1 ∗ 2 ∗ 3 6 1=\frac{1*2*3}{6} 1=61∗2∗3
等式成立
2.
假设n=k时,结论成立,即
1
2
+
2
2
+
3
2
+
⋯
+
k
2
=
k
(
2
k
+
1
)
(
k
+
1
)
6
1^2+2^2+3^2+\cdots+k^2=\frac{k(2k+1)(k+1)}{6}
12+22+32+⋯+k2=6k(2k+1)(k+1)
则n=k+1时,等式左边
1
2
+
2
2
+
3
2
+
⋯
+
k
2
+
(
k
+
1
)
2
=
k
(
2
k
+
1
)
(
k
+
1
)
6
+
(
k
+
1
)
2
=
(
k
+
1
)
(
k
(
2
k
+
1
)
6
+
k
+
1
)
=
(
k
+
1
)
(
2
k
2
+
7
k
+
6
6
)
=
(
k
+
1
)
(
2
k
+
3
)
(
k
+
2
)
6
1^2+2^2+3^2+\cdots+k^2+(k+1)^2=\frac{k(2k+1)(k+1)}{6}+(k+1)^2=(k+1)(\frac{k(2k+1)}{6}+k+1)=(k+1)(\frac{2k^2+7k+6}{6})=\frac{(k+1)(2k+3)(k+2)}{6}
12+22+32+⋯+k2+(k+1)2=6k(2k+1)(k+1)+(k+1)2=(k+1)(6k(2k+1)+k+1)=(k+1)(62k2+7k+6)=6(k+1)(2k+3)(k+2)
故n=k+1时,等式成立
综上可知
1
2
+
2
2
+
3
2
+
⋯
+
n
2
=
n
(
2
n
+
1
)
(
n
+
1
)
6
(
n
∈
N
∗
)
1^2+2^2+3^2+\cdots+n^2=\frac{n(2n+1)(n+1)}{6} (n\in N^*)
12+22+32+⋯+n2=6n(2n+1)(n+1)(n∈N∗)