2021-07-30

请用归纳法证明以下定理:

对任意的正整数n,
1 2 + 2 2 + 3 2 + ⋯ + n 2 = n ( 2 n + 1 ) ( n + 1 ) 6 1^2+2^2+3^2+\cdots+n^2=\frac{n(2n+1)(n+1)}{6} 12+22+32++n2=6n(2n+1)(n+1)

证明:

1.

n=1时,

1 = 1 ∗ 2 ∗ 3 6 1=\frac{1*2*3}{6} 1=6123

等式成立

2.

假设n=k时,结论成立,即
1 2 + 2 2 + 3 2 + ⋯ + k 2 = k ( 2 k + 1 ) ( k + 1 ) 6 1^2+2^2+3^2+\cdots+k^2=\frac{k(2k+1)(k+1)}{6} 12+22+32++k2=6k(2k+1)(k+1)

则n=k+1时,等式左边
1 2 + 2 2 + 3 2 + ⋯ + k 2 + ( k + 1 ) 2 = k ( 2 k + 1 ) ( k + 1 ) 6 + ( k + 1 ) 2 = ( k + 1 ) ( k ( 2 k + 1 ) 6 + k + 1 ) = ( k + 1 ) ( 2 k 2 + 7 k + 6 6 ) = ( k + 1 ) ( 2 k + 3 ) ( k + 2 ) 6 1^2+2^2+3^2+\cdots+k^2+(k+1)^2=\frac{k(2k+1)(k+1)}{6}+(k+1)^2=(k+1)(\frac{k(2k+1)}{6}+k+1)=(k+1)(\frac{2k^2+7k+6}{6})=\frac{(k+1)(2k+3)(k+2)}{6} 12+22+32++k2+(k+1)2=6k(2k+1)(k+1)+(k+1)2=(k+1)(6k(2k+1)+k+1)=(k+1)(62k2+7k+6)=6(k+1)(2k+3)(k+2)
故n=k+1时,等式成立

综上可知
1 2 + 2 2 + 3 2 + ⋯ + n 2 = n ( 2 n + 1 ) ( n + 1 ) 6 ( n ∈ N ∗ ) 1^2+2^2+3^2+\cdots+n^2=\frac{n(2n+1)(n+1)}{6} (n\in N^*) 12+22+32++n2=6n(2n+1)(n+1)(nN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值