1. 设G是群,H是G的子群。任取 g 1 , g 2 ∈ G g_1,g_2\in G g1,g2∈G,则 g 1 H = g 2 H g_1H=g_2H g1H=g2H当且仅当 g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g1−1g2∈H
证明充分性:
因为
g
1
H
=
g
2
H
g_1H=g_2H
g1H=g2H,所以
∃
h
1
,
h
2
∈
H
g
2
h
2
=
g
1
h
1
⇔
g
1
−
1
g
2
h
2
=
h
1
⇔
g
1
−
1
g
2
=
h
1
h
2
−
1
\exist h_1,h_2\in H\\g_2h_2=g_1h_1\Leftrightarrow g_1^{-1}g_2h_2=h_1\Leftrightarrow g_1^{-1}g_2=h_1h_2^{-1}
∃h1,h2∈Hg2h2=g1h1⇔g1−1g2h2=h1⇔g1−1g2=h1h2−1
因为
h
1
h
2
−
1
∈
H
h_1h_2^{-1}\in H
h1h2−1∈H,所以
g
1
−
1
g
2
∈
H
g_1^{-1}g_2\in H
g1−1g2∈H
证明必要性:
因为
g
1
−
1
g
2
∈
H
g_1^{-1}g_2\in H
g1−1g2∈H,所以
∃
h
∈
H
\exist h\in H
∃h∈H
g
1
−
1
g
2
=
h
⇔
g
2
=
g
1
h
g_1^{-1}g_2=h\Leftrightarrow g_2=g_1h
g1−1g2=h⇔g2=g1h
故
g
2
H
=
g
1
h
H
=
g
1
(
h
H
)
=
g
1
H
g_2H=g_1hH=g_1(hH)=g_1H
g2H=g1hH=g1(hH)=g1H
3. 如果G是群,H是群G的子群,且[G: H] = 2,请证明对任意的g ∈G,gH= Hg
证明:
因为[G:H]=2,所以G被分为2个划分H、H’。对任意g∈G,有g∈H或g∈H‘。
若g∈H,则gH=H=Hg
若g∈H’,则gH=H’=Hg
所以gH=Hg
4. 如果群H是群G的真子群,即存在 g ∈ G g\in G g∈G但是 g ∉ H g\notin H g∈/H。请证明|H|≤|G|/2
证明:
因为群H是群G的真子群,即存在
g
∈
G
g\in G
g∈G但是
g
∉
H
g\notin H
g∈/H
所以群H在G上有若干个陪集,即
[
G
:
H
]
≥
2
[G: H] \geq2
[G:H]≥2
由拉格朗日定理得
[
G
:
H
]
=
∣
G
∣
/
∣
H
∣
[G: H]=|G|/|H|
[G:H]=∣G∣/∣H∣
所以
∣
G
∣
/
∣
H
∣
≥
2
⇔
∣
H
∣
≤
∣
G
∣
/
2
|G|/|H|\geq2\Leftrightarrow|H|\leq|G|/2
∣G∣/∣H∣≥2⇔∣H∣≤∣G∣/2
5. 设G是阶为pq的群,其中p和q是素数。请证明G的任意真子群是循环群
证明:
设H是G的真子群,由拉格朗日定理可知, 群G的子群的阶一定整除群G的阶, 故
∣
H
∣
∣
∣
G
∣
|H|\mid|G|
∣H∣∣∣G∣,即
∣
H
∣
∣
p
g
|H||pg
∣H∣∣pg,且
∣
H
∣
≠
p
q
|H|\neq pq
∣H∣=pq。
又p和q是素数,则H等于{e},或阶为p的子群或阶为q的子群
H={e}是循环群, |H|=p或q时由推论8.2知, 素数阶有限群为循环群
所以G 的任意真子群是循环群。
7. 使用群论的方法重新证明费尔马小定理和欧拉定理。
(1)费马小定理
群G的阶为n,
∀
a
∈
G
\forall a\in G
∀a∈G,由推论8.1得
o
r
d
(
a
)
∣
∣
G
∣
ord(a)||G|
ord(a)∣∣G∣,即
n
=
k
×
o
r
d
(
a
)
(
k
∈
Z
)
n=k\times ord(a)(k\in Z)
n=k×ord(a)(k∈Z)
所以
a
n
=
a
k
×
o
r
d
(
g
)
=
e
k
=
e
a^n=a^{k\times ord(g)}=e^{k}=e
an=ak×ord(g)=ek=e