CINTA作业六

1. 设G是群,H是G的子群。任取 g 1 , g 2 ∈ G g_1,g_2\in G g1,g2G,则 g 1 H = g 2 H g_1H=g_2H g1H=g2H当且仅当 g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g11g2H

证明充分性:
因为 g 1 H = g 2 H g_1H=g_2H g1H=g2H,所以 ∃ h 1 , h 2 ∈ H g 2 h 2 = g 1 h 1 ⇔ g 1 − 1 g 2 h 2 = h 1 ⇔ g 1 − 1 g 2 = h 1 h 2 − 1 \exist h_1,h_2\in H\\g_2h_2=g_1h_1\Leftrightarrow g_1^{-1}g_2h_2=h_1\Leftrightarrow g_1^{-1}g_2=h_1h_2^{-1} h1,h2Hg2h2=g1h1g11g2h2=h1g11g2=h1h21
因为 h 1 h 2 − 1 ∈ H h_1h_2^{-1}\in H h1h21H,所以 g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g11g2H

证明必要性:
因为 g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g11g2H,所以 ∃ h ∈ H \exist h\in H hH
g 1 − 1 g 2 = h ⇔ g 2 = g 1 h g_1^{-1}g_2=h\Leftrightarrow g_2=g_1h g11g2=hg2=g1h
g 2 H = g 1 h H = g 1 ( h H ) = g 1 H g_2H=g_1hH=g_1(hH)=g_1H g2H=g1hH=g1(hH)=g1H

3. 如果G是群,H是群G的子群,且[G: H] = 2,请证明对任意的g ∈G,gH= Hg
证明:
因为[G:H]=2,所以G被分为2个划分H、H’。对任意g∈G,有g∈H或g∈H‘。
若g∈H,则gH=H=Hg
若g∈H’,则gH=H’=Hg
所以gH=Hg

4. 如果群H是群G的真子群,即存在 g ∈ G g\in G gG但是 g ∉ H g\notin H g/H。请证明|H|≤|G|/2

证明:
因为群H是群G的真子群,即存在 g ∈ G g\in G gG但是 g ∉ H g\notin H g/H
所以群H在G上有若干个陪集,即 [ G : H ] ≥ 2 [G: H] \geq2 [G:H]2
由拉格朗日定理得 [ G : H ] = ∣ G ∣ / ∣ H ∣ [G: H]=|G|/|H| [G:H]=G/H
所以 ∣ G ∣ / ∣ H ∣ ≥ 2 ⇔ ∣ H ∣ ≤ ∣ G ∣ / 2 |G|/|H|\geq2\Leftrightarrow|H|\leq|G|/2 G/H2HG/2

5. 设G是阶为pq的群,其中p和q是素数。请证明G的任意真子群是循环群
证明:
设H是G的真子群,由拉格朗日定理可知, 群G的子群的阶一定整除群G的阶, 故 ∣ H ∣ ∣ ∣ G ∣ |H|\mid|G| HG,即 ∣ H ∣ ∣ p g |H||pg Hpg,且 ∣ H ∣ ≠ p q |H|\neq pq H=pq
又p和q是素数,则H等于{e},或阶为p的子群或阶为q的子群
H={e}是循环群, |H|=p或q时由推论8.2知, 素数阶有限群为循环群
所以G 的任意真子群是循环群。

7. 使用群论的方法重新证明费尔马小定理和欧拉定理。
(1)费马小定理
群G的阶为n, ∀ a ∈ G \forall a\in G aG,由推论8.1得 o r d ( a ) ∣ ∣ G ∣ ord(a)||G| ord(a)G,即 n = k × o r d ( a ) ( k ∈ Z ) n=k\times ord(a)(k\in Z) n=k×ord(a)(kZ)
所以 a n = a k × o r d ( g ) = e k = e a^n=a^{k\times ord(g)}=e^{k}=e an=ak×ord(g)=ek=e

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值