CINTA作业7

CINTA作业7

3. 如果H1 和H2 是群G的正规子群,证明H1H2 也是群G的正规子群

证明:
因为H1 和H2 是群G的正规子群,所以对任意g∈G,有
g H 1 g − 1 = H 1 , g H 2 g − 1 = H 2 , 即 g H 1 g − 1 g H 2 g − 1 = g H 1 H 2 g − 1 = H 1 H 2 gH_{1}g^{-1}=H_1,gH_2g^{-1}=H_2,即gH_{1}g^{-1}gH_2g^{-1}=gH_{1}H_2g^{-1}=H_1H_2 gH1g1=H1,gH2g1=H2gH1g1gH2g1=gH1H2g1=H1H2
得 g H 1 H 2 g − 1 = H 1 H 2 得gH_{1}H_2g^{-1}=H_1H_2 gH1H2g1=H1H2

两边同时乘g得
g H 1 H 2 = H 1 H 2 g gH_1H_2=H_1H_2g gH1H2=H1H2g
又因为H1 和H2 是群G的子群,所以H1H2也是G的子群,故H1H2 是群G的正规子群。

5. 定义映射ϕ : G→G为:g →g^2。请证明 ϕ 是一种群同态当且仅当G 是阿贝尔群

证明充分性:
因为 ϕ 是一种群同态,所以对任意的a,b∈G:
ϕ ( a ⋅ b ) = ϕ ( a ) ∘ ϕ ( b ) ( a b ) 2 = a 2 b 2 a b ⋅ a b = a ⋅ a b ⋅ b \begin{aligned} \phi(a\cdot b)&=\phi(a)\circ\phi(b)\\(ab)^2&=a^2b^2\\ ab\cdot ab&=a\cdot ab\cdot b \end{aligned} ϕ(ab)(ab)2abab=ϕ(a)ϕ(b)=a2b2=aabb

由消去律得:
b ⋅ a = a ⋅ b \begin{aligned} b\cdot a=a\cdot b \end{aligned} ba=ab
所以G 是阿贝尔群

证明必要性:
因为G是阿贝尔群,则对任意的a,b∈G:
ϕ ( a ⋅ b ) = ( a ⋅ b ) 2 = a b ⋅ a b = a a ⋅ b b = a 2 ⋅ b 2 = ϕ ( a ) ∘ ϕ ( b ) \phi(a\cdot b)=(a\cdot b)^2=ab\cdot ab=aa\cdot bb=a^2\cdot b^2=\phi(a)\circ \phi(b) ϕ(ab)=(ab)2=abab=aabb=a2b2=ϕ(a)ϕ(b)
所以ϕ 是一种群同态

7. 证明:如果H是群G上指标为2 的子群,则H是G的正规子群

证明:
因为[G:H]=2,所以G被分为2个划分H、H’。对任意g∈G,有g∈H或g∈H‘。

若g∈H:gH=H=Hg

若g∈H’:gH=H’=Hg

所以H是G的正规子群

9.证明:如果群G是循环群,则商群G/H也是循环群

证明:
对于循环群G的任意生成元g,因为群H是群G的正规子群,有:
( g H ) n = g n H n = g n H ⊂ G (gH)^n=g^nH^n=g^nH\subset G (gH)n=gnHn=gnHG
其中gn可以是G中的任意元素,故gnH可以是任何划分群G的左陪集,故gnH生成G/H中所以元素。

所以商群G/H是循环群,生成元是gH。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值