CINTA作业8

CINTA作业8

1.手动计算2000^2019 (mod 221),不允许使用电脑或者其他电子设备。
解:
200 0 2019 ( m o d 221 ) = ( 2000 m o d 221 ) 2019 ( m o d 221 ) = 1 1 2019 ( m o d 221 ) 2000^{2019}(mod221)=(2000mod221)^{2019}(mod221)=11^{2019}(mod221) 20002019(mod221)=(2000mod221)2019(mod221)=112019(mod221)
根据中国剩余定理,定义从Zn 到Zp ×Zq 的同构映射φ,n=p*q:
ϕ ( x ) = ( [ x m o d p ] , [ x m o d q ] ) \phi(x) = ([x mod p],[x mod q]) ϕ(x)=([xmodp],[xmodq])
因为221=17*13所以:
11 ↔ ( 11 m o d 17 , 11 m o d 13 ) = ( 11 , 11 ) ( 11 , 11 ) 2019 = ( [ 1 1 2019 m o d 17 ] , [ 1 1 2019 m o d 13 ] ) 11\leftrightarrow (11mod17,11mod13)=(11,11)\\ (11,11)^{2019}=([11^{2019}mod17],[11^{2019}mod13]) 11(11mod17,11mod13)=(11,11)(11,11)2019=([112019mod17],[112019mod13])
由费马小定理
1 1 2019 m o d 17 = 1 1 126 ∗ 16 + 3 m o d 17 = 1 1 3 m o d 17 = 5 1 1 2019 m o d 13 = 1 1 168 ∗ 13 + 3 m o d 17 = 1 1 3 m o d 13 = 5 11^{2019}mod17=11^{126*16+3}mod17=11^3mod17=5\\ 11^{2019}mod13=11^{168*13+3}mod17=11^3mod13=5 112019mod17=1112616+3mod17=113mod17=5112019mod13=1116813+3mod17=113mod13=5

200 0 2019 ( m o d 221 ) = 1 1 2019 ( m o d 221 ) ↔ ( 11 , 11 ) 2019 = ( 5 , 5 ) 即 200 0 2019 ( m o d 221 ) = 5 2000^{2019}(mod221)=11^{2019}(mod221)\leftrightarrow(11,11)^{2019}=(5,5)\\ 即2000^{2019}(mod221)=5 20002019(mod221)=112019(mod221)(11,11)2019=(5,5)20002019(mod221)=5
2. 运用CRT 求解:x ≡ 8 (mod 11) ,x ≡ 3 (mod 19)
解:
记a = 8,b = 3,p = 11,q = 19 和n = pq = 209;
由 e g c d 算 法 得 , p − 1 ≡ 7 ( m o d   q ) , q − 1 ≡ 7 ( m o d   p ) 由egcd算法得,p^{-1}\equiv7(mod\ q),q^{-1}\equiv7(mod\ p) egcdp17(mod q),q17(mod p)
由中国剩余定理得:
x = a q q − 1 + b p p − 1 ( m o d   n ) = 8 ∗ 19 ∗ 7 + 3 ∗ 11 ∗ 7 ( m o d   209 ) = 41 x=aqq^{-1}+bpp^{-1}(mod\ n)=8*19*7+3*11*7(mod\ 209)=41 x=aqq1+bpp1(mod n)=8197+3117(mod 209)=41
3. 运用CRT 求解:x ≡ 1 (mod 5),x ≡ 2 (mod 7),x ≡ 3 (mod 9),x ≡ 4 (mod 11)
解:
记 a1=1,a2=2,a3=3,a4=4,m1=5,m2=7,m3=9,m4=11,M=m1*m2*m3*m4=3465
令 b i = M / m i   , 存 在 b i − 1 使 得 b i b i − 1 ≡ 1 ( m o d   m i ) 令b_i = M/m_i\ ,存在b^{−1}_i 使得b_ib^{−1}_i ≡1 (mod\ m_i) bi=M/mi ,bi1使bibi11(mod mi)
由egcd算法得
b 1 = m 2 ∗ m 3 ∗ m 4 = 693 , b 1 − 1 = 2 ( m o d   m 1 ) b 2 = m 1 ∗ m 3 ∗ m 4 = 495 , b 2 − 1 = 3 ( m o d   m 2 ) b 3 = m 1 ∗ m 2 ∗ m 4 = 385 , b 3 − 1 = 4 ( m o d   m 3 ) b 4 = m 1 ∗ m 2 ∗ m 3 = 315 , b 4 − 1 = 8 ( m o d   m 4 ) b_1=m2*m3*m4=693,b_1^{-1}=2(mod\ m_1)\\ b_2=m1*m3*m4=495,b_2^{-1}=3(mod\ m_2)\\ b_3=m1*m2*m4=385,b_3^{-1}=4(mod\ m_3)\\ b_4=m1*m2*m3=315,b_4^{-1}=8(mod\ m_4) b1=m2m3m4=693,b11=2(mod m1)b2=m1m3m4=495,b21=3(mod m2)b3=m1m2m4=385,b31=4(mod m3)b4=m1m2m3=315,b41=8(mod m4)
由中国剩余定理得:
x = ∑ i = 1 4 a i b i b i − 1 ( m o d   M ) = 1731 x=\sum_{i = 1}^{4} a_ib_ib_i^{-1}(mod\ M)=1731 x=i=14aibibi1(mod M)=1731
4. 设m 和n 为互素的正整数,a > 0 为一个正整数,如果x ≡ a (mod m),x ≡ a (mod n)
x 模mn 等于什么?为什么?提示:这是一道看上去与中国剩余定理相关的问题。

解:
由题意得
x = m p + a ( p ∈ Z ) = n q + a ( q ∈ Z ) x=mp+a(p\in Z)=nq+a(q\in Z) x=mp+a(pZ)=nq+a(qZ)
由上式可得mp=nq,因为m 和n 为互素的正整数,又两个互素的正整数的最小公倍数是他们的乘积,可推得
m p = n q = k m n ,   即 p = k n ,   q = k m ( k ∈ Z ) 故 x = k m n + a ( k ∈ Z ) mp=nq=kmn,\ 即p=kn,\ q=km(k\in Z)\\故x=kmn+a(k\in Z) mp=nq=kmn, p=kn, q=km(kZ)x=kmn+a(kZ)
所以
x ≡ a ( m o d   m n ) x\equiv a(mod\ mn) xa(mod mn)
5. 设p 和q 是不同的两个素数,请证明p^q−1 + q^p−1 ≡1 (mod pq)
证明:
p,q互素,由费马小定理得
p q − 1 ≡ 1 ( m o d   q ) , q p − 1 ≡ 1 ( m o d   p ) 又 p q − 1 ≡ 0 ( m o d   p ) , q p − 1 ≡ 0 ( m o d   q ) 故 p q − 1 + q p − 1 ≡ 1 ( m o d   q ) p q − 1 + q p − 1 ≡ 1 ( m o d   p ) p^{q-1}\equiv1(mod\ q),q^{p-1}\equiv1(mod\ p)\\ 又p^{q-1}\equiv0(mod\ p),q^{p-1}\equiv0(mod\ q)\\ 故p^{q-1}+q^{p-1}\equiv1(mod\ q)\\ p^{q-1}+q^{p-1}\equiv1(mod\ p) pq11(mod q),qp11(mod p)pq10(mod p)qp10(mod q)pq1+qp11(mod q)pq1+qp11(mod p)
由4题结论x ≡ a (mod m),x ≡ a (mod n),则 x≡a(mod mn)

p q − 1 + q p − 1 ≡ 1 ( m o d   p q ) p^{q-1}+q^{p-1}\equiv1(mod\ pq) pq1+qp11(mod pq)

好的,这里是50种不同国家的语言表达“我爱你”: 1. English - I love you 2. Spanish - Te quiero 3. French - Je t'aime 4. German - Ich liebe Dich 5. Italian - Ti amo 6. Portuguese - Eu te amo 7. Russian - Ya lyublyu tebya 8. Chinese (Mandarin) - Wo ai ni 9. Japanese - Aishiteru 10. Korean - Sarang hae 11. Arabic - Ana behibak (to a male) / Ana behibek (to a female) 12. Dutch - Ik hou van je 13. Danish - Jeg elsker dig 14. Swedish - Jag älskar dig 15. Norwegian - Jeg elsker deg 16. Finnish - Minä rakastan sinua 17. Polish - Kocham Cię 18. Czech - Miluji Tě 19. Hungarian - Szeretlek 20. Bulgarian - Obicham te 21. Greek - S'ayapo 22. Turkish - Seni seviyorum 23. Romanian - Te iubesc 24. Croatian - Volim te 25. Serbian - Volim te 26. Slovenian - Ljubim te 27. Slovak - Milujem Ťa 28. Estonian - Ma armastan sind 29. Latvian - Es tevi mīlu 30. Lithuanian - Aš tave myliu 31. Icelandic - Ég elska þig 32. Albanian - Te dua 33. Thai - Phom rak khun (to a male) / Chan rak khun (to a female) 34. Vietnamese - Anh ye^u em (to a female) / Em ye^u anh (to a male) 35. Indonesian - Saya cinta padamu 36. Filipino - Mahal kita 37. Hindi - Main tumse pyar karta hoon 38. Bengali - Ami tomake bhalobashi 39. Urdu - Main tumse muhabbat karta hoon 40. Marathi - Me tujhe pyaar kartaa hoo 41. Punjabi - Main tere pyar da haan 42. Telugu - Nenu ninnu premisthunnanu 43. Tamil - Naan unnai kaadhalikken 44. Malayalam - Njan ninnodenikkoo 45. Kannada - Naanu ninna preetisuttene 46. Gujrati - Hu tane pyar karoo chu 47. Nepali - Ma timilai maya garchu 48. Sinhala - Mama oyata arderyi 49. Burmese - Chit pa de 50. Mongolian - Bi chamd hairtai
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值