动态规划——求连续和为最大的子序列

题目

在一个数组中找出和最大的连续几个数(至少包含一个数)。例如:数组A[] = [ -2, 1, -3, 4, -1, 2, 1, -5, 4],则连续的子序列[4, -1, 2, 1]有最大的和6

输入:数组长度n;长度为n的整型数组

输出:最大的和的值

分析

该题目的每次决策依赖于当前的状态,又随即引起状态的转移。问题的最优解所包含的子问题的解也是最优的,具有最优子结构,满足最优化原理。所以可以采用动态规划的方式进行解决。

设函数Fk表示只考虑前k个数字,且第k个数字在连续序列之中时,获得的最大和的值。

因此,递推方程为当Fk > 0时,  Fk+1  = Fk + k。    Fk <=0 时, Fk+1 =  k。由于题目只要求最大和的值,所以在动态规划过程中,用变量sum对最大和进行记录。

代码

#include <iostream>

using namespace std;
int main()
{
    int n;
    cin >> n;

    int i;
    int arr[n];
    for(i=0;i<n;i++)
        cin>>arr[i];

    int j;
    int sumPrevious=0,sum=arr[0];
    for(j=0;j<n;j++)
    {
        if(sumPrevious<0)
            sumPrevious=arr[j];
        else
            sumPrevious+=arr[j];

        if(sum < sumPrevious)
            sum = sumPrevious;
    }
    cout << sum;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值