在线签名验证与宫颈癌诊断的技术探索
在线签名验证
在在线签名验证领域,为了有效区分真实签名和伪造签名,研究人员采用了一系列先进的技术和方法。
首先,将所有与形状相关的特征组合成向量 G,其表达式为:
[G = [Gcx(l) \ Gcy(l) \ GT(l) \ Gs1(l) \ Gs2(l)]]
根据此向量,签名会获得一个形状等级 GS,计算公式为:
[GS = G * WFT]
这里的 * 表示向量的乘积。同样的过程也用于利用与动态相关的特征为签名生成动态等级 GD。这些计算由评分单元完成。
为了研究遗传算法和加权机制在区分类别 ω0 和 ω1 方面的有效性,研究人员收集了一个人的 241 个签名,其中包括 16 个真实签名、220 个随机伪造签名和 10 个熟练伪造签名。对这些签名数据应用特定的处理流程,计算每个签名的 ESD 向量,并对得到的 241 个 ESD 向量进行主成分分析(PCA),以确定潜在的类别结构。从 PCA 投影图中可以看到预期的双类别结构,真实签名的聚类反映了该方法能够处理签名过程中的自然个体内变异性。
| 签名类型 | 数量 |
|---|---|
| 真实签名 | 16 |
| 随机伪造签名 | 220 |
| 熟练伪造签名 | 10 |
超级会员免费看
订阅专栏 解锁全文
1013

被折叠的 条评论
为什么被折叠?



