Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a "rotation function" F
on A
as follow:
F(k)=0*Bk[0]+1*Bk[1]+...+(n-1)*Bk[n-1]
.
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
初步想法:
int maxRotateFunction(int* A, int ASize) {
int F[ASize];
int i;
int j;
int temp=0;
if(ASize==0)return 0;
for(i=0;i<ASize;i++){
F[i]=0;
}
for(i=0;i<ASize;i++){
for(j=0;j<ASize;j++){
temp=(ASize-j+i)%ASize;
F[j]+=i*A[temp];
}
}
temp=F[0];
for(i=1;i<ASize;i++){
temp=temp>F[i]?temp:F[i];
}
return temp;
}
时间复杂度为O(n 2),timeout。
最开始只想到每算出一个F[k],时间复杂度为O(n),算出n个时间复杂度也只能是O(n2),于是就想当然的没有再考虑时间复杂度的问题,按照最原始的方法算出每一个F[k],然后再比较大小,最终结果果然是timeout。
于是看了别人的解答,解题思路为找出F[K]与F[k-1]之间的关系,先计算出F[0],再根据F[0]计算出剩下的F,这样时间复杂度为O(n)。
F[k]=0*Bk[0]+1*Bk[1]+...+(n-1)*Bk[n-1]
F[k-1]=0*Bk-1[0]+1*Bk-1[1]+...+(n-1)*Bk-1[n-1]
=0*Bk[1]+1*Bk[2]+...+(n-2)*Bk[n-1]+(n-1)*Bk[0]
F[k]-F[k-1]=(1-n)*Bk[0]+Bk[1]+Bk[2]+...+Bk[n-1]
=sum-n*Bk[0]
其中sum为数组中所有数的和;
Bk[0]的计算方式为:
k=0, Bk[0] = A[0];
k=1, Bk[0]= A[ASize-1];
......
k=n-1, Bk[0] = A[ASize-(n-1)]
实现如下:
int maxRotateFunction(int* A, int ASize) {
int f=0;
int sum=0;
int result=0;
int i;
for(i=0;i<ASize;i++){
f+=i*A[i];
sum+=A[i];
}
result=f;
for(i=1;i<ASize;i++){
f=sum-ASize*A[ASize-i]+f;
result=result>f?result:f;
}
return result;
}
总结:思考问题的时候不要被固有思维局限,多方面考虑。