机器学习的数学基础 矩阵论与概率论

本文深入探讨机器学习的数学基础,详细阐述矩阵论与概率论的概念及其在机器学习中的应用。从标量、向量、矩阵、张量的联系到矩阵的范数、特征值分解、条件概率、独立性等核心概念,揭示了这些基础知识在机器学习模型中的重要性。
摘要由CSDN通过智能技术生成

机器学习的数学基础

1.1 标量、向量、矩阵、张量之间的联系

标量(scalar)
​一个标量表示一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示标量。标量通常被赋予小写的变量名称。

向量(vector)
​一个向量表示一组有序排列的数。通过次序中的索引,我们可以确定每个单独的数。通常我们赋予向量粗体的小写变量名称,比如xx。向量中的元素可以通过带脚标的斜体表示。向量 X X X的第一个元素是 X 1 X_1 X1,第二个元素是 X 2 X_2 X2,以此类推。我们也会注明存储在向量中的元素的类型(实数、虚数等)。

矩阵(matrix)
​矩阵是具有相同特征和纬度的对象的集合,表现为一张二维数据表。其意义是一个对象表示为矩阵中的一行,一个特征表示为矩阵中的一列,每个特征都有数值型的取值。通常会赋予矩阵粗体的大写变量名称,比如 A A A

张量(tensor)
​在某些情况下,我们会讨论坐标超过两维的数组。一般地,一个数组中的元素分布在若干维坐标的规则网格中,我们将其称之为张量。使用 A A A 来表示张量“A”。张量 A A A中坐标为 ( i , j , k ) (i,j,k) (i,j,k)的元素记作 A ( i , j , k ) A_{(i,j,k)} A(i,j,k)

四者之间关系

标量是0阶张量,向量是一阶张量。举例:
​标量就是知道棍子的长度,但是你不会知道棍子指向哪儿。
​向量就是不但知道棍子的长度,还知道棍子指向前面还是后面。
​张量就是不但知道棍子的长度,也知道棍子指向前面还是后面,还能知道这棍子又向上/下和左/右偏转了多少。

1.2 张量与矩阵的区别?

  • 从代数角度讲, 矩阵它是向量的推广。向量可以看成一维的“表格”(即分量按照顺序排成一排), 矩阵是二维的“表格”(分量按照纵横位置排列), 那么 n n n阶张量就是所谓的 n n n维的“表格”。 张量的严格定义是利用线性映射来描述。
  • 从几何角度讲, 矩阵是一个真正的几何量,也就是说,它是一个不随参照系的坐标变换而变化的东西。向量也具有这种特性。
  • 张量可以用3×3矩阵形式来表达。
  • 表示标量的数和表示矢量的三维数组也可分别看作1×1,1×3的矩阵。

1.3 矩阵和向量相乘结果

​ 一个 m m m n n n列的矩阵和 n n n行向量相乘,最后得到就是一个 m m m行的向量。运算法则就是矩阵中的每一行数据看成一个行向量与该向量作点乘。

1.4 向量和矩阵的范数归纳

向量的范数
​ 定义一个向量为: a ⃗ = [ − 5 , 6 , 8 , − 10 ] \vec{a}=[-5, 6, 8, -10] a =[5,6,8,10]。任意一组向量设为 x ⃗ = ( x 1 , x 2 , . . . , x N ) \vec{x}=(x_1,x_2,...,x_N) x =(x1,x2,...,xN)。其不同范数求解如下:

  • 向量的1范数:向量的各个元素的绝对值之和,上述向量 a ⃗ \vec{a} a 的1范数结果就是:29。

∥ x ⃗ ∥ 1 = ∑ i = 1 N ∣ x i ∣ \Vert\vec{x}\Vert_1=\sum_{i=1}^N\vert{x_i}\vert x 1=i=1Nxi

  • 向量的2范数:向量的每个元素的平方和再开平方根,上述 a ⃗ \vec{a} a 的2范数结果就是:15。

∥ x ⃗ ∥ 2 = ∑ i = 1 N ∣ x i ∣ 2 \Vert\vec{x}\Vert_2=\sqrt{\sum_{i=1}^N{\vert{x_i}\vert}^2} x 2=i=1Nxi2

  • 向量的负无穷范数:向量的所有元素的绝对值中最小的:上述向量 a ⃗ \vec{a} a 的负无穷范数结果就是:5。

∥ x ⃗ ∥ − ∞ = min ⁡ ∣ x i ∣ \Vert\vec{x}\Vert_{-\infty}=\min{|{x_i}|} x =minxi

  • 向量的正无穷范数:向量的所有元素的绝对值中最大的:上述向量 a ⃗ \vec{a} a 的负无穷范数结果就是:10。

∥ x ⃗ ∥ + ∞ = max ⁡ ∣ x i ∣ \Vert\vec{x}\Vert_{+\infty}=\max{|{x_i}|} x +=maxxi

  • 向量的p范数:向量元素绝对值的p次方和的1/p次幂。

L p = ∥ x ⃗ ∥ p = ∑ i = 1 N ∣ x i ∣ p p L_p=\Vert\vec{x}\Vert_p=\sqrt[p]{\sum_{i=1}^{N}|{x_i}|^p} Lp=x p=pi=1Nxip

矩阵的范数

​定义一个矩阵 A = [ − 1 , 2 , − 3 ; 4 , − 6 , 6 ] A=[-1, 2, -3; 4, -6, 6] A=[1,2,3;4,6,6]。 任意矩阵定义为: A m × n A_{m\times n} Am×n,其元素为 a i j a_{ij} aij

矩阵的范数定义为

∥ A ∥ p : = sup ⁡ x ≠ 0 ∥ A x ∥ p ∥ x ∥ p \Vert{A}\Vert_p :=\sup_{x\neq 0}\frac{\Vert{Ax}\Vert_p}{\Vert{x}\Vert_p} Ap:=x̸=0supxpAxp

​当向量取不同范数时, 相应得到了不同的矩阵范数。

  • 矩阵的1范数(列范数):矩阵的每一列上的元素绝对值先求和,再从中取个最大的,(列和最大),上述矩阵 A A A的1范数先得到 [ 5 , 8 , 9 ] [5,8,9] [5,8,9],再取最大的最终结果就是:9。

∥ A ∥ 1 = max ⁡ 1 ≤ j ≤ n ∑ i = 1 m ∣ a i j ∣ \Vert A\Vert_1=\max_{1\le j\le n}\sum_{i=1}^m|{a_{ij}}| A1=1jnmaxi=1maij

  • 矩阵的2范数:矩阵 A T A A^TA ATA的最大特征值开平方根,上述矩阵 A A A的2范数得到的最终结果是:10.0623。

∥ A ∥ 2 = λ m a x ( A T A ) \Vert A\Vert_2=\sqrt{\lambda_{max}(A^T A)} A2=λ

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值