机器学习基础-学习笔记 矩阵论

矩阵论

矩阵表示

在实数域上,大小为n*m的矩阵的集合可以表示为:

M(Rnm=A:ARnm)

因此,( M(Rnm),R)) 可作为线性空间,他们的距离distance(A, B) 满足非负性对称性三角不等式性

范式

奇异值

通常,可以通过定义范式的形式来诱导距离,常用的范数有: AM(Rnm)

||A||1=max{i=1n|Ai,1|,i=1n|Ai,2|,,i=1n|Ai,m|}

||A||2=A

||A||F=(i=1nj=1m(A2i,j)12)

||A||=max{j=1m|A1,j|,j=1m|A2,j|,,j=1m|An,j|}

||A||1,2=i=1n(j=1m(Ai,j)2)12

||A||2,1=(i=1n(j=1m|Ai,j|)2)12

在实际的信号处理过程中,无论是构建损失项还是正则项,每一种范数都有其特定的物理意义,反映着数据的分布类型,或者蕴含着数据的先验特性。

通过范式诱导得到距离(距离空间),进而得到临近关系(邻域特性),根据这种关系就可以将线性空间(非线性变换可以通过线性变换的逼近来得到)进行剖分,当然剖分的子空间个数取决于邻域的半径。

矩阵的倒数的求解通常在机器学习中较为常用,如参数更新时所依赖的梯度的计算等。

假设对于输入信号x,输出信号y,之间的线性映射关系为

f(X)Ax+by

其中A为投影矩阵,b为偏置项(其中A和b都可以为矩阵)。通常利用 L2 范数来定义损失函数。

Loss(x,y)=12||Ax+by||22

其中待学习的参数为(A,b)。

过拟合现象

指数据样本量相比参数量而言较多,导致训练得到的模型十分依赖于该数据集,使得该模型的测试性能或者预测性能比较差,即在另一个数据集上的表现较差(需要说明的是这二个数据集的分布方式相同)。

矩阵的奇异值分解

对于任意一个矩阵 ARnm ,都有如下的表达式。

A=UVT

UTU=In

VVT=Im

其中, 为对角矩阵,且 URnm VRnm

主成分分析

用到了矩阵的奇异值分解,通过奇异值的排序和信息利用率达到85%以上的准则确定主成分的个数。

通常,主成分分析是一种线性的降低纬度的方法。使用矩阵的奇异值分解的核心是逼近的思想,可以通过调整对角矩阵 中的值来实现对矩阵A的刻画。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值