随着脑机接口(Brain-Computer Interface, BCI)技术的发展,脑电图(Electroencephalogram, EEG)信号分析变得越来越重要。在脑机接口应用中,从原始的EEG信号中提取有效的特征是实现高性能分类和识别的关键步骤。本文将介绍一种基于时域特征提取的EEG信号处理算法,并提供相应的源代码。
-
数据预处理
首先,对原始的EEG信号进行预处理。这包括去除噪声、滤波和降采样等步骤。常用的去噪方法包括均值滤波、中值滤波和小波去噪等。滤波可以使用低通滤波器和带通滤波器,以去除不需要的频率成分。降采样可以减少数据量,提高计算效率。 -
分段处理
EEG信号通常是连续的,为了更好地提取特征,可以将信号分成多个时间段进行处理。每个时间段被称为一个窗口。窗口的长度可以根据实际需求进行选择,一般情况下,较短的窗口可以更好地捕捉到EEG信号的瞬时特性,而较长的窗口可以更好地捕捉到EEG信号的长期特性。 -
时域特征提取
在每个窗口内,可以提取一系列时域特征来描述EEG信号的特性。以下是一些常用的时域特征:
- 平均值(Mean):计算窗口内信号样本的平均值。
- 方差(Variance):计算窗口内信号样本的方差,描述信号的离散程度。