微分方程和向量场

自治的(时间齐次的)一阶微分方程

x ˙ = ϕ ( x ) ( 6.1 ) \dot{x}=\phi(x) (6.1) x˙=ϕ(x)(6.1)
其中, x ˙ \dot x x˙表示 ∂ x / ∂ t \partial x/ \partial t x/t x ˙ \dot x x˙为向量组 ( x ˙ 1 , x ˙ 2 , . . . , x ˙ k ) (\dot x_1,\dot x_2,...,\dot x_k) (x˙1,x˙2,...,x˙k) ϕ \phi ϕ是开集X到 R k R^{k} Rk的映射, X = { x 1 , x 2 . . . , x k } X=\{x_1,x_2...,x_k\} X={x1,x2...,xk}指的是状态空间, ϕ ( x ) \phi(x) ϕ(x)被称为向量场,定义了状态空间X中每个点上流的方向和速度(由x_k可以计算出\phi(x_k),用矩阵X进行的映射即为向量场\phi),由(6.1)解微分方程面临如下几个问题:

  • 是否有解
  • 是否唯一
  • 是否可以为全局解

里普菲茨连续性

若对任意 x , y ∈ C , C ⊂ X , ∃ λ x,y\in C ,C\subset X,\exists \lambda x,yC,CX,λ使得 ∣ ∣ ϕ ( y ) − ϕ ( x ) ∣ ∣ ⩽ ∣ ∣ y − x ∣ ∣ ||\phi(y)-\phi(x)||\leqslant ||y-x|| ∣∣ϕ(y)ϕ(x)∣∣∣∣yx∣∣,则称函数 ϕ \phi ϕ是里普菲茨连续的。
一阶偏导数连续 严格于 里普菲茨连续 严格于 连续

picard_lindelof定理(解的存在性与唯一性)

如果 X ⊂ R k X\subset R^k XRk是一个开集,且向量场 ϕ : X → R k \phi:X \rightarrow R^k ϕ:XRk是里普菲茨连续的,那么(6.1)通过每个状态 x 0 ∈ X x^0 \in X x0X有唯一的解映射 ξ ( ⋅ , x 0 ) : T → X \xi(·,x^0):T\rightarrow X ξ(⋅,x0):TX,而且, ξ ( t , x 0 ) \xi(t,x^0) ξ(t,x0) t ∈ T t\in T tT x 0 ∈ X x^0\in X x0X时是连续的。
通过picard_lindelof定理可知,在足够平滑的向量场(满足里普菲茨连续性条件下),(局部)解的存在性与唯一性(满足初始条件的解)可以得到保证

解的全局性

定义:方程组(6.1)通过某个初始状态 x 0 ∈ X x^0\in X x0X的解是一个函数 ξ ( ⋅ , x 0 ) : T → X \xi(·,x^0):T \rightarrow X ξ(⋅,x0):TX,使得 ξ ( 0 , x 0 ) = x 0 \xi(0,x^0)=x^0 ξ(0,x0)=x0(在t=0时,满足初始条件),且下式对所有T=R均成立,则称解是全局的。
d d t ξ ( t , x 0 ) = ψ [ ξ ( t , x 0 ) ] \dfrac{d}{dt}\xi(t,x^0)=\psi[\xi(t,x^0)] dtdξ(t,x0)=ψ[ξ(t,x0)]

微分方程解的特殊情况

  1. 非里普菲茨连续情况下,常微分方程有多个解
    请添加图片描述

  2. 爆炸型解
    请添加图片描述

微分方程解法

例6.4
{ x ˙ 1 = ϕ 1 ( x ) = α x 1 − x 2 x ˙ 2 = ϕ 2 ( x ) = x 1 + α x 2 \begin{cases} \dot x_1=\phi_1(x)=\alpha x_1-x_2\\ \dot x_2=\phi_2(x)= x_1+\alpha x_2 \end{cases} {x˙1=ϕ1(x)=αx1x2x˙2=ϕ2(x)=x1+αx2
请添加图片描述
本文参考来源《演化博弈论》乔根·W·威布尔[著]

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值