本回答由 AI 生成,内容仅供参考,请仔细甄别。
引言:当AlphaGo击败人类顶尖棋手时,深度学习展现出了对复杂时序模式的强大解析能力。本文将深入解析一个融合LSTM与Transformer的混合架构量化交易系统,展示如何将前沿AI技术应用于金融市场的价格预测与交易决策。
一、核心机制解析
1. 混合神经网络架构
-
LSTM分支:通过门控机制捕捉价格序列的长期依赖关系。配置双层LSTM结构(64→32单元),有效建模市场惯性效应
# LSTM时序建模实现 self.lstm1 = LSTM(64, return_sequences=True, kernel_regularizer=l2(0.01)) self.lstm2 = LSTM(32, dropout=0.2)
-
Transformer分支:利用多头注意力机制识别全局价格模式。4头注意力层配合GELU激活函数,捕获市场突发波动
# Transformer特征提取 self.attention = MultiHeadA