Inductive(归纳式)、Transductive(迁移式)和 Fully supervised(全监督)训练方式

Inductive(归纳式)学习

  • 定义:Inductive 学习是一种传统的监督学习方法,模型在训练时只使用训练数据,在测试时使用独立的测试数据进行评估。
  • 过程: 模型在训练数据上进行训练。训练完成后,模型在未见过的测试数据上进行评估。
  • 特点:这种方法模拟了现实场景中模型的应用情况,模型在训练阶段和测试阶段的数据是完全独立的。
  • 优点:具有良好的泛化能力。
  • 缺点:在某些数据稀少或数据分布复杂的情况下,模型可能无法很好地泛化。

Transductive(迁移式)学习

  • 定义:Transductive 学习是一种半监督学习方法,模型在训练时可以利用部分测试数据的信息进行辅助训练,但不会直接使用测试数据的标签。
  • 过程:模型在训练数据上进行初步训练。利用测试数据的未标注部分(如特征分布)对模型进行调整或增强。最后在测试数据上进行评估。
  • 特点:利用测试数据的特征分布,可以在训练阶段获取更多的信息,从而可能提高模型的性能。
  • 优点:在测试数据与训练数据分布不完全一致的情况下,可以提高模型的适应性。
  • 缺点:在实际应用中较难实现,因为测试数据通常不可用或不完整。

Fully supervised(全监督)学习

  • 定义:Fully supervised 学习是完全基于监督学习的数据使用方法,即模型在训练时利用所有可用的标注数据。
  • 过程:模型在一个包含所有标注信息的完整数据集上进行训练。通常情况下,训练数据集和测试数据集是完全独立的。
  • 特点:这种方法适用于标注数据充分的场景,训练和测试的数据都是完全标注的。
  • 优点:由于训练数据集较大,模型有更多的信息进行学习,从而可能达到更高的准确性。
  • 缺点:需要大量标注数据,数据标注成本高,且如果测试数据与训练数据分布差异大,模型的泛化能力可能受限。

总结

  • Inductive 学习 主要关注模型的泛化能力,训练和测试数据独立。
  • Transductive 学习 在训练时利用测试数据的特征分布,旨在提高模型对特定测试集的适应性。
  • Fully supervised 学习 完全依赖标注数据进行训练,适用于数据标注充分的场景。
  • 7
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值