题目描述
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays
思路分析
一个增序数组
要寻求一个数组的中位数,很容易让人联想到用二分法解决
对于偶数个元素的数组A,假定其元素个数为 n,下标从0开始,其中位数是 (A[(n-1)/2] + A[n/2])/2
对于偶数个元素的数组B,假定其元素个数为m,下标从0开始,其中位数是A[m/2]
隐含条件:任何一个存在中位数的数组,其中位数都