最详解——寻找两个有序数组的中位数

本文详细解析如何在O(log(m+n))的时间复杂度内找到两个有序数组的中位数。通过分析一个增序数组的中位数求解思路,推广到两个增序数组,并讨论双数组长度的奇偶性、保持数组长度为奇数的策略、等式变换、分治策略及临界点的判断,最后给出解决方案的代码实现。
摘要由CSDN通过智能技术生成

参考:【分步详解】两个有序数组中的中位数和Top K问题

题目描述

给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。

请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

示例 1:

nums1 = [1, 3]
nums2 = [2]

则中位数是 2.0
示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

则中位数是 (2 + 3)/2 = 2.5

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays

思路分析

一个增序数组

要寻求一个数组的中位数,很容易让人联想到用二分法解决

对于偶数个元素的数组A,假定其元素个数为 n,下标从0开始,其中位数是 (A[(n-1)/2] + A[n/2])/2

对于偶数个元素的数组B,假定其元素个数为m,下标从0开始,其中位数是A[m/2]

隐含条件:任何一个存在中位数的数组,其中位数都

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值