一文看懂ChatGPT与存算一体化

ChatGPT开启大模型“军备赛”,存储作为计算机重要组成部分明显受益: 

ChatGPT开启算力军备赛,大模型参数呈现指数规模,引爆海量算力需求,模型计算量增长速度远超人工智能硬件算力增长速度,同时也对数据传输速度提出了更高的要求。XPU、内存、硬盘组成完整的冯诺依曼体系,以一台通用服务器为例,芯片组+存储的成本约占70%以上,芯片组、内部存储和外部存储是组成核心部件;存储是计算机的重要组成结构,“内存”实为硬盘与CPU之间的中间人,存储可按照介质分类为ROM和RAM两部分。

存算一体,后摩尔时代的必然发展: 

过去二十年中,算力发展速度远超存储,“存储墙”成为加速学习时代下的一代挑战,原因是在后摩尔时代,存储带宽制约了计算系统的有效带宽,芯片算力增长步履维艰。因此存算一体有望打破冯诺依曼架构,是后摩时代下的必然选择,存算一体即数据存储与计算融合在同一个芯片的同一片区之中,极其适用于大数据量大规模并行的应用场景。存算一体优势显著,被誉为AI芯片的“全能战士”,具有高能耗、低成本、高算力等优势;存算一体按照计算方式分为数字计算和模拟计算,应用场景较为广泛,SRAM、RRAM有望成为云端存算一体主流介质。

存算一体前景广阔、渐入佳境: 

存算一体需求旺盛,有望推动下一阶段的人工智能发展,原因是我们认为现在存算一体主要AI的算力需求、并行计算、神经网络计算等;大模型兴起,存算一体适用于从云至端各类计算,端测方面,人工智能更在意及时响应,即“输入”即“输出”,目前存算一体已经可以完成高精度计算;云端方面,随着大模型的横空出世,参数方面已经达到上亿级别,存算一体有望成为新一代算力因素;存算一体适用于人工智能各个场景,如穿戴设备、移动终端、智能驾驶、数据中心等。我们认为存算一体为下一代技术趋势并有望广泛应用于人工智能神经网络相关应用、感存算一体,多模态的人工智能计算、类脑计算等场景。

01. 存算一体,开启算力新篇章

1.1 ChatGPT开启大模型“军备赛”,算力呈现明显缺口

ChatGPT开启算力军备赛: 我们已经在《ChatGPT: 百度文心一言畅想》中证明数据、平台、算力是打造大模型生态的必备基础,且算力是训练大模型的底层动力源泉,一个优秀的算力底座在大模型(AI算法)的训练和推理具备效率优势;同时,我们在《ChatGPT打响AI算力“军备战”》中证明算力是AI技术角逐“入场券”,其中AI服务器、AI芯片等为核心产品;此外,我们还在《ChatGPT ,英伟达DGX引爆AI “核聚变”》中证明以英伟达为代表的科技公司正在快速补足全球AI算力需求,为大模型增添必备“燃料”。

大模型参数呈现指数规模,引爆海量算力需求: 根据财联社和OpenAI数据,ChatGPT浪潮下算力缺口巨大,根据OpenAI数据,模型计算量增长速度远超人工智能硬件算力增长速度,存在万倍差距。运算规模的增长,带动了对AI训练芯片单点算力提升的需求,并对数据传输速度提出了更高的要求。根据智东西数据,过去五年,大模型发展呈现指数级别,部分大模型已达万亿级别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sam5198

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值