【线性代数】SVD&PCA

 用最直观的方式告诉你:什么是主成分分析PCA_哔哩哔哩_bilibili

奇异值分解singular value decomposition,SVD

principal component analysis,PCA

降维操作

pca就是降维后使得信息损失最小

投影在坐标轴上的点越分散,信息保留越多

pca的实现

数据基本的线性变化

协方差矩阵的特征向量就是R

协方差

x,y正相关,协方差大于零;负相关,协方差小于零

pca求解

SVD中的V矩阵就是pca中的R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值