引言
在制造业中实现设备实时数据传输需要对制造业数据、流程和系统有深入的了解,并与相关各方(工程、IT、业务等)进行紧密协作。选择合适的开源或商业解决方案组件至关重要。此外,架构设计还需考虑可伸缩性、可靠性、集成性和成本效益等因素。
系统架构
- 数据采集层
- 在设备或机器上安装传感器或数据采集器,收集实时运行数据,如温度、压力、转速等。
- 使用工业协议和通信接口,如OPC UA、Modbus、Profinet等从设备获取数据。
- 边缘处理层
- 部署工业边缘网关或边缘计算设备,收集从设备传输来的数据。
- 进行初步数据清洗、过滤和基本分析。
- 通过安全通道(HTTPS、VPN等)将数据发送到云端或数据中心。
- 消息队列层
- 使用可靠的消息队列服务,如Kafka、RabbitMQ、Azure IoT Hub等接收设备数据。
- 实现数据缓冲、持久化和负载分担。
- 数据处理层
- 部署大数据集群或流数据处理平台,如Apache Spark、Apache Flink、Azure Stream Analytics等。
- 进行数据清洗、转换、聚合和复杂事件处理。
- 集成机器学习模型进行实时预测和异常检测。
- 数据存储层
- 根据不同的用途选择恰当的数据存储,如关系数据库、时序数据库、数据湖等。
- 存储结构化数据、半结构化数据和非结构化数据。
- 功能应用层
- 开发数据可视化和操作系统,如实时仪表板、工艺优化工具、预测性维护应用等。