枚举+组合数学,LeetCode 2306. 公司命名

目录

一、题目

1、题目描述

2、接口描述

python3

cpp

C#

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解

python3

cpp

C#


一、题目

1、题目描述

给你一个字符串数组 ideas 表示在公司命名过程中使用的名字列表。公司命名流程如下:

  1. 从 ideas 中选择 2 个 不同 名字,称为 ideaA 和 ideaB 。
  2. 交换 ideaA 和 ideaB 的首字母。
  3. 如果得到的两个新名字  不在 ideas 中,那么 ideaA ideaB串联 ideaA 和 ideaB ,中间用一个空格分隔)是一个有效的公司名字。
  4. 否则,不是一个有效的名字。

返回 不同 且有效的公司名字的数目。

2、接口描述

python3
 ​
    def distinctNames(self, ideas: List[str]) -> int:
cpp
 ​
class Solution {
public:
    long long distinctNames(vector<string>& ideas) {
        
    }
};
C#
 ​
public class Solution
{
    public long DistinctNames(string[] ideas)
    {
    }
}

3、原题链接

2306. 公司命名


二、解题报告

1、思路分析

考虑每个首字符出现次数 cnt[]

答案是 cnt[i] * cnt[j] 其中 j < i 吗?

会有非法的

非法的满足什么?

对于不同的i, j,却有着相同的 s[1::]

我们可以将字符串按照后缀分组,遍历字符串数组,计算每个后缀的重叠 pair(i, j) 数目即可

2、复杂度

时间复杂度: O(n(m + U))空间复杂度:O(U^2 + nm)

3、代码详解

python3
 ​
class Solution:
    def distinctNames(self, ideas: list[str]) -> int:
        cnt = [0] * 26
        g = [[0] * 26 for _ in range(26)]
        adj = defaultdict(list)
        for s in ideas:
            a = ord(s[0]) - ord('a')
            st = adj[s[1::]]
            for b in st:
                g[a][b] += 1
                g[b][a] += 1
            st.append(a)
            cnt[a] += 1

        res = 0
        for a in range(1, 26):
            for b in range(a):
                m = g[a][b]
                res += (cnt[a] - m) * (cnt[b] - m)

        return res * 2
cpp
 ​
class Solution {
public:
    long long distinctNames(vector<string>& ideas) {
        std::unordered_map<std::string, std::vector<int>> mp;
        std::array<int, 26> cnt{};
        std::vector<std::array<int, 26>> g(26, std::array<int, 26>{});
        for (auto &s : ideas) {
            auto &st = mp[s.substr(1)];
            int a = s[0] - 'a';
            for (int b : st)
                ++ g[a][b], ++ g[b][a];
            st.push_back(a);
            ++ cnt[a];
        }
        long long res = 0;
        for (int a = 1; a < 26; ++ a)
            for (int b = 0; b < a; ++ b) {
                int m = g[a][b];
                res += 1LL * (cnt[a] - m) * (cnt[b] - m);
            }
        return res * 2;
    }
};
C#
 ​
public class Solution
{
    public long DistinctNames(string[] ideas)
    {
        IDictionary<string, List<int>> mp = new Dictionary<string, List<int>>();
        int[] cnt = new int[26];
        int[,] g = new int[26, 26];
        foreach (string s in ideas)
        {
            var sb = s.Substring(1);
            if (!mp.ContainsKey(sb))
                mp.Add(sb, new List<int>());
            List<int> st = mp[sb];
            int a = s[0] - 'a';
            foreach(int b in st)
            {
                ++g[a, b];
                ++g[b, a];
            }
            ++cnt[a];
            st.Add(a);
        }
        long res = 0;
        for(int a = 1; a < 26; ++ a)
            for(int b = 0; b < a; ++ b)
            {
                int m = g[a, b];
                res += 1L * (cnt[a] - m) * (cnt[b] - m);
            }
        return res * 2;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值