VSLAM
文章平均质量分 94
从零开始的VSLAM之路,只记了重要的知识,包括数学原理、理论,代码等。
终问鼎
时间诉说我的故事
以后分享放到个人网站了
CSDN随缘更
长安大学一枚机器人与自动驾驶,嵌入式,深度学习爱好者
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【SLAM】10.纵观SLAM,对比方案和未来方向
介绍了主流和经典SLAM方案,给出了未来可以深入研究的SLAM的方向原创 2023-09-19 11:21:59 · 654 阅读 · 0 评论 -
【视觉SLAM入门】9.1 建图1---SLAM任务,稠密地图构建,立体视觉,RGBD,八叉树,点云地图等各种不同地图
本节梳理了单目相机,双目相机和RGB-D相机建立稠密地图的方法,因为特征点不是每一个点都是,所以特征匹配不适用,这里用极线搜索和块匹配的方式进行点的匹配,立体视觉中确定深度使用了基于深度滤波器的方法,不断地做三角化使其收敛,还介绍不同地图以及各自功能原创 2023-09-18 22:33:19 · 5331 阅读 · 0 评论 -
【视觉SLAM入门】8. 回环检测,词袋模型,字典,感知,召回,机器学习
本节介绍了SLAM中的回环检测,从字典,词袋的必要性对比了它们的优势,还记录了字典结构构造,感知率,召回率等,和机器学习进行对比,图像相似度的进行,具体的完成了回环检测的一整个过程,最后对传统回环检测做了提高原创 2023-09-17 15:07:51 · 1445 阅读 · 3 评论 -
【视觉SLAM入门】7.4.后端优化 --- 基于位姿图和基于因子图
本节介绍了后两个后端优化方法:位姿图和从贝叶斯网络演变而来的因子图对后端优化的做法,浅显易懂的从数学原理上进行了分析,便于读者我和的掌握的笔记,源于视觉SLAM十四讲后端2原创 2023-09-12 18:05:20 · 2898 阅读 · 1 评论 -
【视觉SLAM入门】7.3.后端优化 基于KF/EKF和基于BA图优化的后端,推导及举例分析
EKF和KF掌握后,了解后端的做法,通常包含EKF为代表的滤波器模型,假设马尔科夫性的;还有考虑全部状态的非线性优化的做法,只有观测方程时称为BA,从理论到公式再到推导,举实际例子明显易懂原创 2023-09-11 10:28:42 · 959 阅读 · 0 评论 -
【视觉SLAM入门】7.2. 从卡尔曼滤波到扩展卡尔曼滤波,引入、代码、原理、实战,C++实现以及全部源码
承接上一节,在KF基础上引入EKF,扩展卡尔曼滤波,和KF做对比,并从原理,理解,举例并编程通过C++实现加深理解,所有代码已开源原创 2023-09-07 21:33:21 · 1225 阅读 · 0 评论 -
【视觉SLAM入门】7.1. 快速从0上手卡尔曼滤波,二维原理及代码(C++,Eigen库,Cmake工程实现,全部源码)
经典卡尔曼滤波算法的认识,理解,从理论到落地,通俗易懂,从原理到实现,举了二维的滤波代码为例,从0开始对应公式用C++最终实现卡尔曼滤波,构建CMAKE工程,全部源码公开,逐行解释。原创 2023-08-31 22:41:43 · 1310 阅读 · 0 评论 -
【视觉SLAM入门】6.1. (基于直接法的视觉里程计)LK光流法,代码解读, 直接法,特征点法对比,稀疏,半稠密,稠密地图
上一届介绍了特征点法估计相机位姿,但是由于计算量,本节介绍计算量更少的直接法。首先是直接法前身-LK光流法的推导,理论和代码分析,结果分析,引出直接法,稀疏直接法,半稠密直接法,稠密直接法以及运动环境和适用条件,优势劣势对比。原创 2023-08-28 15:34:25 · 1328 阅读 · 0 评论 -
【视觉SLAM入门】5.2. (基于特征点的视觉里程计)2D-3D PNP 3D-3D ICP BA非线性优化方法 数学方法SVD DLT
延续5.1介绍了2D-3D求解相机位姿方法DLT和BA,3D-3D求解变换关系的方法SVD,BA法,从数学上进行推导。原创 2023-08-20 19:09:36 · 1213 阅读 · 0 评论 -
【视觉SLAM入门】5.1. (基于特征点的视觉里程计)特征提取和匹配--FAST,ORB(关键点描述子),2D-2D对极几何,本质矩阵,单应矩阵,三角测量,三角化矛盾
从特征点的解释和说明出发,介绍了关键点,描述子和他们的具体实现。对VO前端里程计的任务进行了推理,得到了视觉SLAM中重要的特征匹配任务的完成和原理推导。以及在单目相机情况下的特征匹配和初始化即用对极约束求解相机位姿和深度(三角化)的过程原创 2023-08-01 11:42:18 · 2963 阅读 · 0 评论 -
【视觉SLAM入门】4.3. (非线性最小二乘问题)优化算法实现-ceres和g2o, 图优化理论
主要介绍了ceres,g2o和图优化理论以及它们的C++代码的详细解读。逐句解读它们的C++代码实现,对诸如此类的非线性优化问题做了统一概括原创 2023-07-28 22:48:23 · 1254 阅读 · 0 评论 -
【视觉SLAM入门】4.2 非线性最小二乘理论部分------线搜索,信赖域,最速/牛顿下降法,高斯牛顿,LM等原理推导
视觉SLAM14讲的笔记,介绍了SLAM领域中常用的非线性优化的方法数学原理推导。从梯度法,一阶梯度法,二阶梯度法,到高斯牛顿法,到L-M。基本上领域中解法分为线搜索和信赖域两种方法原创 2023-07-27 18:05:52 · 973 阅读 · 0 评论 -
【视觉SLAM入门】4.1. 从状态估计到非线性最小二乘推演------状态估计,最大后验,最大似然,最小二乘,高维高斯分布,非线性优化推导
考虑运动方程和观测方程在实际中其实是有噪声的情况,所以设噪声服从高维高斯分布,从头推导了机器人位姿估计,根据最大后验,贝叶斯公式,将它变成一个最大似然问题,进而通过考虑高维高斯分布将它转化成包含运动方程和观测方程的SLAM通用的非线性优化问题,具体成误差平方和,演变为求解一个最小二乘问题的过程原创 2023-07-10 21:53:25 · 552 阅读 · 0 评论 -
【视觉SLAM入门】3. 相机模型,内外参,畸变推导
介绍了成像原理,推导方式,误差分析和补偿,内参外参的推导和分析针孔相机,RGBD相机,双目相机的工作原理和优劣,参考视觉SLAM14讲的一份详细笔记原创 2023-07-10 10:43:34 · 2089 阅读 · 0 评论 -
【视觉SLAM入门】2 旋转--李群与李代数
以一个例子展开解决SLAM中位姿变换的关键问题---对无约束旋转的求导问题,用的是李群与李代数的知识,从旋转欧式群推导出李群,再推出李代数,用它们重新描述旋转的过程,给出了旋转矩阵和李代数的关系和求导计算方法(求导模型和扰动模型),最后引入了单目SLAM中多一个尺度的李代数表述(相似变换群)原创 2023-07-07 16:28:40 · 1668 阅读 · 0 评论 -
【视觉SLAM入门】1. 基础知识,运动观测,旋转(旋转矩阵,轴角,欧拉角,四元数)和eigen库基础
视觉SLAM前三章概要,主要是基础的矩阵论知识和三维位姿变换的几种表示方法和推导,介绍了EIGEN库和在该库中的几种形式等。还侧面介绍了运动,观测的通用方程和linux中的库。原创 2023-07-05 18:54:11 · 1172 阅读 · 0 评论
分享