Orange3 实战教程
光谱学
多文件部件
支持多源数据加载与合并,可编辑属性、定义变量类型,支持标签标识与缺失值插值,配置结果可提交报告。
光谱预处理
提供截断、高斯平滑、基线校正等预处理方法,支持步骤顺序调整与实时预览,可结合参考数据集优化数据质量。
插值
对齐不同波数光谱数据集,支持自动/手动参考插值,验证分辨率损失对分类性能的影响,提升测量效率。
高光谱
专用于高光谱数据可视化,支持交互式区域选择、图谱操作(如放大、保存)与光谱曲线分析。
光谱
光谱数据探索工具,支持多选、平移缩放、峰值标注与线选筛选,适用于快速特征对比。
无监督学习
Louvain 聚类
基于模块化优化的社区检测算法,支持近邻图构建与参数调整(如分辨率),输出聚类标签。
密度聚类(DBSCAN)
基于核心点与邻域距离的分组,支持参数优化(如k近邻图分析),适用于噪声数据与复杂分布。
流形学习
非线性降维技术(t-SNE、MDS等),可视化高维数据低维结构,支持分类变量连续化预处理。
主成分分析(PCA)
线性降维方法,提取主成分特征,支持归一化与数据可视化(如鸢尾花二维投影)。
离群值检测
集成单类SVM、协方差估计等方法,支持污染度与邻居数设置,提供离群值标记与统计。
k均值聚类
经典聚类算法,支持轮廓系数评估簇数,输出初始中心点与标签,适用于快速分组。
层次聚类
基于树状图的聚类方法,支持多种链接方式(如沃德法),可修剪深度并生成二维投影。
模型与评估
ROC分析
可视化模型分类性能,绘制真阳性率与假阳性率曲线,支持最优阈值与分类器选择。
混淆矩阵
展示分类错误分布(如虹膜数据误分类实例),支持实例筛选与模型交叉验证对比。
参数拟合器
自动化超参数调优工具,对比不同参数对模型性能(AUC/R²)的影响。
随机森林
集成学习方法,支持特征重要性评分,输出多棵决策树模型,适用于分类与回归任务。
逻辑回归
支持L1/L2正则化的分类模型,可结合特征排序分析变量贡献。
数据可视化
散点图
核心探索工具,支持属性对投影优化、颜色/尺寸调整与交互式数据筛选。
热力图
展示特征相关性或基因表达模式,支持行列聚类与颜色方案定制。
箱线图
分析属性分布与异常值,支持按子组相关性排序(ANOVA/卡方检验)。
树状查看器
可视化决策树结构,支持节点选择与数据子集导出,适用于探索性分析。
t-SNE二维投影
高维数据降维可视化,优化局部与全局结构保留,支持基因/单细胞数据解析。
数据处理与转换
数据采样器
支持固定样本量、分层抽样与过采样,适用于不平衡数据与交叉验证。
缺失值填补
自定义填补策略(均值/中位数),支持单个属性覆盖全局设置。
离散化
将连续变量分段,支持等宽/等频分箱或手动阈值调整。
数据合并
按行或列拼接数据集,支持主键匹配与保留未匹配数据选项。
进阶应用实例
文本分类
基于逻辑回归/朴素贝叶斯的主题分类,支持诺模图分析关键词贡献。
生物基因聚类
结合t-SNE与聚类识别差异表达基因,解析分子通路与调控机制。
乳腺癌亚群分析
使用Kaplan-Meier曲线与箱线图探索患者生存率与特征关联。
其他工具
构建工作流
可视化编程核心指南,通过部件拖放与连接实现端到端分析流程。
导出模型
支持模型保存(pickle格式)与跨工作流复用,兼容Python脚本调用。
中文界面指南
菜单功能详解,涵盖预处理、可视化、分类算法与交互操作说明。