Orange3 实战教程

Orange3 实战教程

光谱学

多文件部件

支持多源数据加载与合并,可编辑属性、定义变量类型,支持标签标识与缺失值插值,配置结果可提交报告。

光谱预处理

提供截断、高斯平滑、基线校正等预处理方法,支持步骤顺序调整与实时预览,可结合参考数据集优化数据质量。

插值

对齐不同波数光谱数据集,支持自动/手动参考插值,验证分辨率损失对分类性能的影响,提升测量效率。

高光谱

专用于高光谱数据可视化,支持交互式区域选择、图谱操作(如放大、保存)与光谱曲线分析。

光谱

光谱数据探索工具,支持多选、平移缩放、峰值标注与线选筛选,适用于快速特征对比。


无监督学习

Louvain 聚类

基于模块化优化的社区检测算法,支持近邻图构建与参数调整(如分辨率),输出聚类标签。

密度聚类(DBSCAN)

基于核心点与邻域距离的分组,支持参数优化(如k近邻图分析),适用于噪声数据与复杂分布。

流形学习

非线性降维技术(t-SNE、MDS等),可视化高维数据低维结构,支持分类变量连续化预处理。

主成分分析(PCA)

线性降维方法,提取主成分特征,支持归一化与数据可视化(如鸢尾花二维投影)。

离群值检测

集成单类SVM、协方差估计等方法,支持污染度与邻居数设置,提供离群值标记与统计。

k均值聚类

经典聚类算法,支持轮廓系数评估簇数,输出初始中心点与标签,适用于快速分组。

层次聚类

基于树状图的聚类方法,支持多种链接方式(如沃德法),可修剪深度并生成二维投影。


模型与评估

ROC分析

可视化模型分类性能,绘制真阳性率与假阳性率曲线,支持最优阈值与分类器选择。

混淆矩阵

展示分类错误分布(如虹膜数据误分类实例),支持实例筛选与模型交叉验证对比。

参数拟合器

自动化超参数调优工具,对比不同参数对模型性能(AUC/R²)的影响。

随机森林

集成学习方法,支持特征重要性评分,输出多棵决策树模型,适用于分类与回归任务。

逻辑回归

支持L1/L2正则化的分类模型,可结合特征排序分析变量贡献。


数据可视化

散点图

核心探索工具,支持属性对投影优化、颜色/尺寸调整与交互式数据筛选。

热力图

展示特征相关性或基因表达模式,支持行列聚类与颜色方案定制。

箱线图

分析属性分布与异常值,支持按子组相关性排序(ANOVA/卡方检验)。

树状查看器

可视化决策树结构,支持节点选择与数据子集导出,适用于探索性分析。

t-SNE二维投影

高维数据降维可视化,优化局部与全局结构保留,支持基因/单细胞数据解析。


数据处理与转换

数据采样器

支持固定样本量、分层抽样与过采样,适用于不平衡数据与交叉验证。

缺失值填补

自定义填补策略(均值/中位数),支持单个属性覆盖全局设置。

离散化

将连续变量分段,支持等宽/等频分箱或手动阈值调整。

数据合并

按行或列拼接数据集,支持主键匹配与保留未匹配数据选项。


进阶应用实例

文本分类

基于逻辑回归/朴素贝叶斯的主题分类,支持诺模图分析关键词贡献。

生物基因聚类

结合t-SNE与聚类识别差异表达基因,解析分子通路与调控机制。

乳腺癌亚群分析

使用Kaplan-Meier曲线与箱线图探索患者生存率与特征关联。


其他工具

构建工作流

可视化编程核心指南,通过部件拖放与连接实现端到端分析流程。

导出模型

支持模型保存(pickle格式)与跨工作流复用,兼容Python脚本调用。

中文界面指南

菜单功能详解,涵盖预处理、可视化、分类算法与交互操作说明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

err2008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值