深度学习环境配置2——windows下的torch=1

+ [三、配置torch环境](#torch_79)
+ - [1、pytorch环境的创建与激活](#1pytorch_80)
	- [2、pytorch库的安装](#2pytorch_91)
	- * [a、官方推荐安装方法(推荐)](#a_98)
		* [b、先下载whl后安装](#bwhl_107)
	- [3、其它依赖库的安装](#3_121)
	- [4、安装较慢请注意换源](#4_140)
+ [四、安装VSCODE](#VSCODE_155)
+ - [1、下载安装包安装(推荐)](#1_157)
	- * [a、VSCODE的下载](#aVSCODE_159)
		* [b、VSCODE的安装](#bVSCODE_162)
	- [2、anaconda上安装](#2anaconda_172)

注意事项

一、2021/9/11更新

安装CUDA前需要安装Visual Studio,我安装的版本为Visual Studio 2017,视频与视频中未提及,请小伙伴们注意。

30系列显卡不适合该教程,30系列显卡仅支持CUDA11.0,可以参考博客https://blog.csdn.net/weixin_44791964/article/details/120668551进行配置。

博文中显示的安装环境为tensorflow,这是因为我讲pytorch和tensorflow装在一起了,所以不用管,大家自己安装激活的环境是pytorch。

二、2021/7/8更新

许多粉丝反馈,报TypeError: array() takes 1 positional argument but 2 were given错误,可以修改pillow版本解决。

pip install pillow==8.2.0

学习前言

好多人问环境怎么配置,还是出个教程吧。

pytorch-cpu版本的环境配置博客为https://blog.csdn.net/weixin_44791964/article/details/120655098
在这里插入图片描述

各个版本pytorch的配置教程

各个版本pytorch的配置教程如下:
深度学习环境配置10——Ubuntu下的torch==1.7.1环境配置
深度学习环境配置8——(30系显卡)windows下的torch==1.7.1环境配置
深度学习环境配置5——windows下的torch-cpu=1.2.0环境配置
深度学习环境配置2——windows下的torch=1.2.0环境配置

环境内容

torch:1.2.0
torchvision:0.4.0

环境配置

一、Anaconda安装

Anaconda的安装主要是为了方便环境管理,可以同时在一个电脑上安装多种环境,不同环境放置不同框架:pytorch、tensorflow、keras可以在不同的环境下安装,只需要使用conda create –n创建新环境即可。

1、Anaconda的下载

同学们可以选择安装新版Anaconda和旧版的Anaconda,安装步骤没有什么区别。

旧版本anaconda的下载:
新版本的Anaconda没有VSCODE,如果大家为了安装VSCODE方便可以直接安装旧版的Anaconda,百度网盘连接如下。也可以装新版然后分开装VSCODE。
链接: https://pan.baidu.com/s/12tW0Oad_Tqn7jNs8RNkvFA 提取码: i83n

新版本anaconda的下载:
如果想要安装最新的Anaconda,首先登录Anaconda的官网:https://www.anaconda.com/distribution/。直接下载对应安装包就可以。
在这里插入图片描述
在这里插入图片描述
一般是下载64位的,下载完成后打开。

2、Anaconda的安装

在这里插入图片描述
选择安装的位置,可以不安装在C盘。
在这里插入图片描述
我选择了Add Anaconda to my PATH environment variable,这样会自动将anaconda装到系统的环境变量中,配置会更加方便一些。
在这里插入图片描述
等待安装完之后,Anaconda的安装就结束了。

二、Cudnn和CUDA的下载和安装

我这里使用的是torch=1.2.0,官方推荐的Cuda版本是10.0,因此会用到cuda10.0,与cuda10.0对应的cudnn是7.4.1。

1、Cudnn和CUDA的下载

网盘下载:
链接: https://pan.baidu.com/s/1znYSRDtLNFLufAuItOeoyQ
提取码: 8ggr

官网下载:
cuda10.0官网的地址是:
cuda10.0官网地址
cudnn官网的地址是:需要大家进去后寻找7.4.1.5。
cudnn官网地址

下载完之后得到这两个文件。
在这里插入图片描述
在这里插入图片描述

2、Cudnn和CUDA的安装

下载好之后可以打开exe文件进行安装。
在这里插入图片描述
这里选择自定义。
不
然后直接点下一步就行了。
在这里插入图片描述
安装完后在C盘这个位置可以找到根目录。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
然后大家把Cudnn的内容进行解压。
在这里插入图片描述
把这里面的内容直接复制到C盘的根目录下就可以了。
在这里插入图片描述

三、配置torch环境

1、pytorch环境的创建与激活

Win+R启动cmd,在命令提示符内输入以下命令:

conda create –n pytorch python=3.6

activate pytorch

这里一共存在两条指令:
前面一条指令用于创建一个名为pytorch的环境,该环境的python版本为3.6。
后面一条指令用于激活一个名为pytorch的环境。

2、pytorch库的安装

由于我们所有的操作都要在对应环境中进行,所以在进行库的安装前需要先激活环境。

activate pytorch 

此时cmd窗口的样子为:
在这里插入图片描述

a、官方推荐安装方法(推荐)

打开pytorch的官方安装方法:
https://pytorch.org/get-started/previous-versions/
官网推荐的安装代码如下,我使用的是Cuda10的版本,不太懂为什么要写3个=才能正确定位,两个=会定位到cuda92的whl:

# CUDA 10.0
pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

这是pytorch官方提供的指令,用于安装torch和torchvision。

b、先下载whl后安装

最后的话

最近很多小伙伴找我要Linux学习资料,于是我翻箱倒柜,整理了一些优质资源,涵盖视频、电子书、PPT等共享给大家!

资料预览

给大家整理的视频资料:

给大家整理的电子书资料:

如果本文对你有帮助,欢迎点赞、收藏、转发给朋友,让我有持续创作的动力!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以点击这里获取!

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以点击这里获取!

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值