Windows配置深度学习环境(从查询合适的torch版本开始)——torch+CUDA+cuDNN

本文指导了在Windows10系统上安装Python3.7.4并配合CUDA11.4.0、cuDNN、Torch1.11.0等版本的配置过程,包括Python版本检查、CUDA选择与安装、cuDNN的下载与验证,以及Torch的下载和测试神经网络的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里假设读者已经有使用Python的相关经验,就不介绍Python的安装过程。
win10+mx350+Python3.7.4+CUDA11.4.0+cudnn11.4
torch 1.11.0+cu113
torchaudio 0.11.0
torchvision 0.12.0+cu113

一、首先查看我们使用的Python版本

一般来说在命令行界面输入python就可以了解python版本。
在这里插入图片描述也可以使用如下代码查询python版本。

import sys
print(sys.version)

以下是torch与Python版本的对应关系对应关系依据
在这里插入图片描述

二、安装CUDA

安装CUDA的前提条件是无论是笔记本或者台式机都要有独立的GPU,且由于笔者电脑是NVIDIA显卡,所以本文只关于NVIDIA显卡的安装教程。

1、确定显卡支持的CUDA版本

首先打开NVIDIA控制面板

在这里插入图片描述

点击组件

在这里插入图片描述

这里即显示适用的CUDA版本

在这里插入图片描述

2、下载对应的CUDA Toolkit

CUDA Toolkit下载对应版本。如我在上一步的查询结果是NVIDIA CUDA 11.4.94,所以我在这里下载11.4。
显卡驱动具有向下兼容性,在这里可以选择11.4.94以下的版本
在这里插入图片描述依次点击
在这里插入图片描述参考以下三张图来源

在这里插入图片描述取消勾选vs
在这里插入图片描述将这三条路径记下,可能会用的到
在这里插入图片描述之后一直下一步即可。
查看环境变量,若未自动添加环境变量,需要手动添加

#根据上一步保存的路径添加
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\libnvvp
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\extras\CUPTI\lib64

验证环境变量是否配置成功
win+r输入cmd进入命令行界面输入nvcc -V
出现版本信息
在这里插入图片描述

2、安装cuDNN

英伟达官网寻找对应的版本 https://developer.nvidia.com/rdp/cudnn-archive以我为例
我在上一步显示的是NVIDIA CUDA 11.4.94
所以在官网我下载结尾为11.x的版本,在这里建议大家尽量不要最新的版本,以防出现问题找不到对应的解决方案。下载后进行解压。

在这里插入图片描述在这里插入图片描述
解压后如图所示,将这三个文件夹复制粘贴到CUDA的文件夹目录下,替换原有文件。
在这里插入图片描述验证cuDNN
同样win+r输入cmd进入命令行界面
切换到安装目录的demo_site
如果存放在C盘外的其它盘需要先d:回车进入该盘符再使用cd 存放目录进入

#如我的存放路径
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\extras\demo_suite

进入该文件夹后输入deviceQuery.exe
出现PASS
在这里插入图片描述输入bandwidthTest.exe
出现PASS
在这里插入图片描述到此cnDNN和CUDA安装成功

三、下载torch

Pytorch官网https://pytorch.org/get-started/previous-versions/查找对应版本的torch torchvision torchaudio
在这你可能会找不到对应版本,请搜索你的CUDA版本可不可以匹配另一个版本的torch
如我的CUDA是11.4但在这里并没有与之对应的版本,但是我经过搜索发现可以使用11.3匹配的版本。
在这里插入图片描述

  1. 在下载前,如果你在官网查询到的命令如下,其中含有torch==1.11.0+cu113,请务必不要删去不要删去+cu113
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
  1. 在下载过程中,若直接复制命令下载很慢,可以使用国内源安装。参考国内源安装
    若使用Anaconda promopt 一劳永逸修改
    下载后可使用如下步骤测试
import torch

print(torch.__version__) #查看torch版本
 
print(torch.cuda.is_available()) # cuda是否可用,可用返回TRUE,不可用返回false

一个简单的神经网络用以测试

import torch
import torch.nn as nn

class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(10000, 10000)

    def forward(self, x):
        x = self.fc1(x)
        return x

net = SimpleNet().to(torch.device('cuda'))

使用gpu运算测试参考第二个代码来源


import torch
import time

gpu = torch.device('cuda')
# 如果用cpu测试那么注释掉上面的代码, 用下面的
# gpu = torch.device('cpu')

beginTime = time.time()

a = torch.rand(2048, 2048)
b = torch.rand(2048, 2048)
c = torch.rand(2048, 2048)

x = a.to(gpu)
y = b.to(gpu)

z = c.to(gpu)

initTime = time.time()
print("ok")

i = 0

while i < 10000:
    z = (z + x + y)
    i += 1

endTime = time.time()

print(z)

print("运行结束, 初始化使用了 {} 秒, 循环用了 {} 秒".format(initTime - beginTime, endTime - beginTime))

以上为本人配置pytorch环境的全过程,以此作为记录,有不足还请大家指出。

<think>好的,我现在需要帮助用户解决如何通过命令行检查PyTorchCUDA版本的问题。首先,我得回忆一下自己之前学过的相关知识。PyTorch是一个常用的深度学习框架,而CUDA是NVIDIA的GPU加速工具。用户想知道如何在命令行中查看它们的版本,这应该是安装和配置环境时的常见需求。 首先,我应该考虑用户可能使用的环境。比如,他们可能是在Python环境中使用PyTorch,所以需要进入Python解释器或者运行Python脚本来获取版本信息。另外,CUDA版本可能有两种情况:一种是系统安装的CUDA版本,另一种是PyTorch所依赖的CUDA版本,这两个可能不同,需要分别检查。 对于PyTorch版本的检查,我记得可以通过导入torch库,然后使用torch.__version__属性来获取。同时,PyTorch编译时所用的CUDA版本可以通过torch.version.cuda来查看。此外,用户可能还想确认PyTorch是否真的能够使用CUDA,即是否有可用的GPU,这时候可以用torch.cuda.is_available()函数,返回True或False。 然后是系统CUDA版本的检查。在Linux系统中,通常可以通过运行nvcc --version或者cat /usr/local/cuda/version.txt来查看。而在Windows系统,可能需要检查环境变量或者安装目录中的版本信息。不过用户的问题可能更关注PyTorch所使用的CUDA版本,所以需要区分清楚这两个概念。 接下来,我需要整理步骤,确保用户能够逐步操作。首先检查PyTorch版本和其对应的CUDA版本,然后检查系统CUDA版本。同时,提醒用户注意PyTorchCUDA版本兼容性的问题,比如引用[2]中提到要确保安装的PyTorch版本CUDA版本兼容,这一点很重要,应该在回答中强调。 另外,用户提供的引用中有提到安装PyTorch时选择对应CUDA版本的方法,比如引用[4]提到了CUDA的安装路径,但用户的问题是关于查看版本,所以可能不需要涉及安装步骤,但需要确保用户知道如何验证安装是否正确。 可能还需要考虑用户的操作系统,比如Linux和Windows在检查系统CUDA版本时的命令不同。不过,用户的问题没有指定操作系统,所以应该给出通用的方法,或者在可能的情况下分别说明。 最后,生成的相关问题需要与主题相关,比如如何安装特定版本的PyTorchCUDA,如何解决版本不兼容的问题,以及验证GPU加速是否启用等。这些问题可以帮助用户进一步解决可能遇到的后续问题。 现在需要把这些思路整理成一个清晰的步骤说明,确保用户能够按照步骤操作,并且引用正确的资料部分,比如引用[2]和[4]中的内容来支持版本兼容性和安装路径的信息。同时,保持回答结构清晰,分点说明,便于用户理解和执行。</think>### 如何通过命令行检查 PyTorchCUDA 的安装版本 #### 1. 检查 PyTorch 版本及对应 CUDA 版本 在 Python 环境中执行以下代码,可获取 PyTorch 版本和其编译时使用的 CUDA 版本: ```python import torch print("PyTorch 版本:", torch.__version__) # 输出 PyTorch 版本 print("PyTorch 使用的 CUDA 版本:", torch.version.cuda) # 输出 PyTorch 编译对应的 CUDA 版本 print("CUDA 是否可用:", torch.cuda.is_available()) # 检查 CUDA 是否被 PyTorch 识别 ``` - 示例输出: ``` PyTorch 版本: 2.0.1 PyTorch 使用的 CUDA 版本: 11.7 CUDA 是否可用: True ``` - **注意**:`torch.version.cuda` 表示 PyTorch 编译时依赖的 CUDA 版本,可能与系统安装的 CUDA 版本不同。需确保两者兼容[^2]。 --- #### 2. 检查系统安装的 CUDA 版本 ##### 方法 1:通过 `nvcc` 命令(适用于 CUDA 工具包) 在命令行中执行: ```bash nvcc --version ``` - 示例输出末尾会显示 CUDA 版本,例如:`Cuda compilation tools, release 11.7, V11.7.99` ##### 方法 2:查看 CUDA 版本文件(Linux) 在 Linux 系统中运行: ```bash cat /usr/local/cuda/version.txt ``` - 输出示例:`CUDA Version 11.7.0` --- #### 3. 验证 PyTorchCUDA 的兼容性 若 PyTorchCUDA 版本(通过 `torch.version.cuda` 获取)与系统 CUDA 版本(通过 `nvcc --version` 获取)不一致,需根据 PyTorch 官方文档确认兼容性[^2]。例如: - PyTorch 2.0.x 需要 CUDA 11.7 或 11.8[^4] - 若版本不匹配,需重新安装对应版本的 PyTorch(参考[安装指南](https://pytorch.org))。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值