自己定义atan2的backward

这篇博客探讨了在深度学习网络训练过程中遇到的NaN值问题,其原因是函数在某些点不可导。作者提供了一个自定义的`angle`函数,通过引入小值避免在反向传播中出现NaN。该函数使用`torch.atan2`进行正向传播,并在反向传播时确保除数不为零,以防止数值不稳定。博客还提到了`clamp_min_`函数的应用,用于设置梯度计算的下限,以保持数值稳定性。
摘要由CSDN通过智能技术生成

报错:网络训练过程中出现nan值

原因:函数并不是在所有点可导,增加小值避免反向传播出现nan值的情况。

from torch.autograd import Function

from torch import Tensor

class angle(Function):

    """Similar to torch.angle but robustify the gradient for zero magnitude."""

    @staticmethod

    def forward(ctx, x: Tensor):

        ctx.save_for_backward(x)

        return torch.atan2(x.imag, x.real)

    @staticmethod

    def backward(ctx, grad: Tensor):

        (x,) = ctx.saved_tensors

        grad_inv = grad / (x.real.square() + x.imag.square()).clamp_min_(1e-10)

        return torch.view_as_complex(torch.stack((-x.imag * grad_inv, x.real * grad_inv), dim=-1))

 ref:GitHub - Rikorose/DeepFilterNet: Noise supression using deep filtering

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值