目标检测经典算法1——指标分析

本文介绍了YOLO目标检测算法,强调其在实时检测中的速度优势。同时,解释了精度、召回率、IOU和MAP等评估指标,以及它们在衡量模型性能中的作用。精度关注预测框与真实框的重叠程度,召回率则关注是否能检测出所有目标。MAP作为平均精度,综合考虑了所有类别的检测效果。置信度阈值用于过滤检测结果,影响精度和召回率的计算。
摘要由CSDN通过智能技术生成

    You Only Look Once (YOLO)

one-stage算法:最核心的优势:速度非常快,适合做实时检测任务 

map:综合检测效果,就是把精度和召回率综合到一起了,是P-R图的曲线下方的面积。

precision(精度)指预测值和真实值越重叠的两个框框越重叠越好,recall(召回率)指原图像中要检测的物体是不是都检测出来了。

IOU:Intersec over Union,交集与并集的比值,IoU越高,越重叠,效果越好

蓝色框是真实值,红色框是预测值

IOU损失:IOU和IOU损失是两码事,IOU损失LIOU = 1 - IOU 

同理,GIOU和GIOU损失(LGIOU)也是两码事, LGIOU = 1 - GIOU

 

 精度:真正的正样本与预测为正的样本的比值,即预测为正的样本中,真正的正样本的占有多少,预测结果中真正的正例的比例

召回率:正确预测的正例与实际上正例总数的比值,即所有正例中被正确检测出来的比例。

在一个数据集检测中,会产生4类结果TP、TN、FP、FN

T---true表示正确,F--false表示错误

P--positive表示积极的,看成正例,N--表示消极的,看成负例。

TP:预测对了,本来为正例,预测为正例,FP:预测错了,本来为负例,预测为正例。

TN: 预测对了,本来为负例,预测为负例,FN:预测错了,本来为正例,预测为负例。

TP+FP:预测为正的样本总数(包含正确的预测和错误的预测)

TP+FN:实际上的正例样本数

TN+FN:预测为负例的样本总数(包含正确的预测和错误的预测)

TN+FP:实际负例样本总数

需要寻找的目标我们叫它为正例,例如:

 例子中要寻找的女生为正例,男生为负例。

检测任务中精度和召回率分别代表什么?

 精度:人脸检测中,预测框和真实框接近程度

召回率:有没有被正确检测出来,如第二幅图,IoU没有交集,召回率低。

 置信度阈值指: 当前检测的框(人脸),是人脸的可能性有多大。低于指定置信度的检测结果会被过滤掉。上图中第二、三幅图会被过滤掉。 

所以只剩第一幅图,TP=1(本来是人脸,判断为人脸),FP=0(本来不是人脸,判断为人脸), TP+FP = 1(检测为人脸的样本总数)。

FN=2(本来是人脸,检测判断为不是人脸)有人脸但没检测到,过滤掉的2幅图即为FN样本数。

Recall = TP/TP+FN = 1/3, precision = TP/TP+FP = 1.

MAP: 就是P-R曲线下方的面积 ,所有类别A、P的平均。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值