矩阵快速幂

11 篇文章 0 订阅

矩阵快速幂

首先是快速幂的两种写法

递归

Matrix ksm(Matrix A, ll b) {
		Matrix ans(1);
    if(b==0)ans=1;
    else
    { ans=ksm(mul(A,A),b/2)
    if(b%2==1)ans=mul(ans,A);
    }	
		return ans;
	}

非递归

Matrix ksm(Matrix A, ll b) {
		Matrix ans(1);
		while (b) {
			if (b & 1)ans = mul(ans, A);
			A = mul(A, A); b >>= 1;
		}
		return ans;
	}
之后结合矩阵乘法,写出如下结构体
struct Matrix {
	static const int N = 15;
	ll a[N][N];
	Matrix(ll e = 0) {
		for (int i = 1; i <= n; i++)for (int j = 1; j <= n; j++)a[i][j] = e * (i == j);
	}
	Matrix mul(Matrix A, Matrix B) {
		Matrix ans(0);
		for (int i = 1; i <= n; i++) {
			for (int j = 1; j <= n; j++) {
				for (int k = 1; k <= n; k++) {
					ans.a[i][j] = (ans.a[i][j] + A.a[i][k] * B.a[k][j]) % mod;
				}
			}
		}
		return ans;
	}
	Matrix ksm(Matrix A, ll b) {
		Matrix ans(1);
		while (b) {
			if (b & 1)ans = mul(ans, A);
			A = mul(A, A); b >>= 1;
		}
		return ans;
	}
}tmp;

矩阵算出后,所求的一般是第一个,即原矩阵第一行乘上另一个的第一列

    	for (int i=1;i<=n;i++)
    		for (int j=1;j<=n;j++)
    			tmp.a[i][j]=1*(i-1==j);//tmp.a[][]数组(矩阵各元素)根据具体情况进行填充
    	if (k<10){
    		printf("%lld\n",k%mod);
    		continue;
    	}//特殊情况
    	tmp=tmp.ksm(tmp,k-10);//快速幂,第二个参数为矩阵乘的次数
    	ll ans=0;
    	for (int i=1;i<=10;i++)ans=(ans+tmp.a[1][i]*(10-i)%mod)%mod;最好MOD两次防溢出
    	printf("%lld\n",ans);
当碰到需要使用前缀和相减时,注意模后的情况有可能会出现相减为负数,如下处理
printf("%lld\n",(solve(b)-solve(a-1)+mod)%mod);//先加上mod确保为正数

在这里插入图片描述

A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2).And we want to Calculate S(N) , S(N) = A(0)2 +A(1)2+……+A(n)2.

) + Y * A(N - 2) (N >= 2).And we want to Calculate S(N) , S(N) = A(0)2 +A(1)2+……+A(n)2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值