强化学习代码规划之深度学习预备

现在到了自动编码器和解码器,同样,先练几遍代码,再去理解

import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import numpy as np


# torch.manual_seed(1)    # reproducible

# Hyper Parameters
EPOCH = 10
BATCH_SIZE = 64
LR = 0.005         # learning rate
DOWNLOAD_MNIST = False
N_TEST_IMG = 5

# Mnist digits dataset
train_data = torchvision.datasets.MNIST(
    root='./mnist/',
    train=True,                                     # this is training data
    transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                                    # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    download=DOWNLOAD_MNIST,                        # download it if you don't have it
)

# plot one example
print(train_data.train_data.size())     # (60000, 28, 28)
print(train_data.train_labels.size())   # (60000)
plt.imshow(train_data.train_data[2].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[2])
plt.show()

# Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)


class AutoEncoder(nn.Module):
    def __init__(self):
        super(AutoEncoder, self).__init__()

        self.encoder = nn.Sequential(
            nn.Linear(28*28, 128),
            nn.Tanh(),
            nn.Linear(128, 64),
            nn.Tanh(),
            nn.Linear(64, 12),
            nn.Tanh(),
            nn.Linear(12, 3),   # compress to 3 features which can be visualized in plt
        )
        self.decoder = nn.Sequential(
            nn.Linear(3, 12),
            nn.Tanh(),
            nn.Linear(12, 64),
            nn.Tanh(),
            nn.Linear(64, 128),
            nn.Tanh(),
            nn.Linear(128, 28*28),
            nn.Sigmoid(),       # compress to a range (0, 1)
        )

    def forward(self, x):
        encoded = self.encoder(x)
        decoded = self.decoder(encoded)
        return encoded, decoded


autoencoder = AutoEncoder()

optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
loss_func = nn.MSELoss()

# initialize figure
f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
plt.ion()   # continuously plot

# original data (first row) for viewing
view_data = train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.
for i in range(N_TEST_IMG):
    a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(())

for epoch in range(EPOCH):
    for step, (x, b_label) in enumerate(train_loader):
        b_x = x.view(-1, 28*28)   # batch x, shape (batch, 28*28)
        b_y = x.view(-1, 28*28)   # batch y, shape (batch, 28*28)

        encoded, decoded = autoencoder(b_x)

        loss = loss_func(decoded, b_y)      # mean square error
        optimizer.zero_grad()               # clear gradients for this training step
        loss.backward()                     # backpropagation, compute gradients
        optimizer.step()                    # apply gradients

        if step % 100 == 0:
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())

            # plotting decoded image (second row)
            _, decoded_data = autoencoder(view_data)
            for i in range(N_TEST_IMG):
                a[1][i].clear()
                a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
                a[1][i].set_xticks(()); a[1][i].set_yticks(())
            plt.draw(); plt.pause(0.05)

plt.ioff()
plt.show()

# visualize in 3D plot
view_data = train_data.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.
encoded_data, _ = autoencoder(view_data)
fig = plt.figure(2); ax = Axes3D(fig)
X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
values = train_data.train_labels[:200].numpy()
for x, y, z, s in zip(X, Y, Z, values):
    c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)
ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max())
plt.show()

好,当练习了几遍代码后,对整体有点了解了,然后再理解每一步是什么作用。

问:编码器和解码器设计的作用是什么?
答:编码器和解码器在AutoEncoder中的设计有以下作用:

编码器(Encoder):编码器负责将输入数据映射到一个低维度的表示,也称为编码或隐藏层。通过降低输入数据的维度,编码器可以提取出数据的关键特征,并将其压缩成更紧凑的表示形式。这种压缩表示通常具有良好的特征表达能力,可以用于后续任务,如降维、特征提取或数据可视化。

解码器(Decoder):解码器负责从编码器获得的低维度表示中重构原始输入数据。它将压缩表示解码成与原始输入具有相同维度的输出。解码器的目标是尽可能准确地重建原始数据,以便最小化重构误差。通过解码器的工作,AutoEncoder可以通过低维表示重新生成与原始数据相似的数据,实现数据的重建或还原。

编码器和解码器的结合使得AutoEncoder能够学习到数据的压缩表示并用于重构,通过这种方式实现了一种自监督学习的方式。在训练过程中,AutoEncoder的目标是最小化重构误差,使得解码器能够尽可能准确地重建原始输入,同时编码器能够学习到数据的有用特征。

再问:这样降维然后又增加维度,不就是等于什么也没做吗?
再答:实际上,AutoEncoder的目标并不仅仅是将数据降维然后再增加维度,而是通过压缩和解压缩过程来学习数据的有用表示。

虽然编码器将数据压缩到较低维度的表示,但这个表示通常不仅仅是原始数据的简单副本。通过限制编码器的容量,AutoEncoder被迫学习到数据的最重要特征,并忽略一些冗余和噪音。因此,编码器产生的低维表示往往是数据的更高级别的抽象。

解码器的作用是将这个抽象的低维表示解压缩回原始数据空间。尽管维度增加,但解码器在这个过程中通过学习从低维表示中恢复原始数据的映射来捕捉数据的结构和模式。解码器的目标是最小化重构误差,以尽量准确地还原原始数据。

因此,AutoEncoder通过编码器和解码器的组合,可以学习到数据的紧凑表示,该表示捕捉了数据中的关键特征。这种低维表示可以用于诸如数据压缩、特征提取、数据可视化和异常检测等任务。虽然编码器和解码器都涉及维度的变化,但它们的目的是通过学习有用的数据表示来提供更高级别的抽象和数据重建,而不仅仅是简单地降低和增加维度。

打印出来了3D的分类图片
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
强化学习在边缘计算中的应用是指利用深度强化学习算法来优化边缘计算环境下的决策和控制。边缘计算是一种在物理实体和工业连接之间提供就近服务的开放平台,其目标是实现更快的网络服务响应和满足实时业务、应用智能、安全与隐私保护等需求。而深度强化学习是一种通过强化学习和深度学习相结合的方法,让机器能够根据环境的反馈来自主地学习和优化决策。深度强化学习在边缘计算中的应用可以通过多智能体的联合学习来实现多通道访问和任务卸载。 具体来说,在边缘计算中,多个智能体可以通过深度强化学习算法进行协作学习,从而实现多通道访问和任务卸载。这个过程中涉及到网络模型、通信模型和计算模型。网络模型用于建模边缘计算网络结构,通信模型用于描述智能体之间的通讯方式,计算模型则包括本地计算和卸载计算两个方面[3.3.1][3.3.2]。通过深度强化学习算法,智能体可以学习到最优的通道选择和任务卸载策略,从而提高边缘计算的性能和效率。 在实际的应用中,关于深度强化学习在边缘计算中的研究还在不断进行中。研究人员通过设计不同的算法和模型,并结合实验验证,来探索深度强化学习在边缘计算环境下的性能和效果。同时,还需要对相关的预备知识和问题进行阐述,并设计合适的实验来评估算法的性能。 总之,深度强化学习在边缘计算中的应用可以通过多智能体的联合学习来实现多通道访问和任务卸载,从而优化边缘计算环境下的决策和控制。这种方法可以提高边缘计算的性能和效率,并满足实时业务、应用智能、安全与隐私保护等需求。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [深度学习学习笔记-论文研读4-基于深度强化学习的多用户边缘计算任务卸载调度与资源分配算法](https://blog.csdn.net/CSDNXXCQ/article/details/125588944)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [多智能体深度强化学习在移动边缘计算的联合多通道访问和任务卸载中的应用](https://blog.csdn.net/weixin_37726222/article/details/130030664)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值