【XSY2729】欧拉子图 无向图连通性 数学

该博客探讨了一道关于无向图的数学问题,涉及欧拉回路和图的连通性。首先解释了题目要求,即计算所有使得每个联通块内存在欧拉回路的子图边数平方和,模10^9 + 7。接着,通过建立DFS树,分析非树边的选择方案,并计算删除不同数量边时联通块数量的变化。博主提出了使用异或和来判断是否产生新的联通块,并讨论了错误概率。最后,虽然未展示具体代码,但提到了解决方案的时间复杂度和一种O(m)的排序方法——挑战排序。
摘要由CSDN通过智能技术生成

题目大意

  给你一个 n 个点 m 条边的无向图(可能有重边),对于这个图的边集的子集(一共有 2m 个),如果其导出的子图的每个联通块内都存在欧拉回路,我们就把答案加上这个子图的边数的平方,答案对 109+7 取模。

   n,m200000

题解

  先求出这个图的DFS树。

  记 c 为这个图的联通块个数。

  通过观察发现,如果非树边任意选,那么确定非树边之后树边只有一种选择方案(从下往上做一遍树形DP可以得到方案)。

  所以选择方案是 2mn+c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值