MATLAB代码:基于条件风险价值CVaR的微网动态定价与调度策略
关键词:P2P交易 微网优化调度 条件风险价值 合作博弈 动态定价
仿真平台:MATLAB yalmip+cplex+mosek
主要内容:代码主要做的是一个基于主从博弈的考虑差别定价和风险管理的微网动态定价与调度策略,构建了双层能源管理框架,上层为零售商的动态定价模型,目标是社会福利最大化;下层是多个产消者的合作博弈模型,优化各产消者的能量管理策略,各产消者之间可以进行P2P交易。
同时,采用纳什谈判法对多个产消者的合作剩余进行公平分配,还考虑了运行风险,采用条件风险价值(CVaR)随机规划方法来描述零售商的预期损失。
代码非常精品,注释保姆级
MATLAB代码:基于条件风险价值CVaR的微网动态定价与调度策略
随着能源行业的快速发展和全球环境问题的不断恶化,微网已经成为解决能源生产和消费之间难以协调的问题的有效途径。与此同时,P2P交易也成为微网运营的常见方式,然而,微网的动态定价和调度仍然是一个需要解决的重要问题。
本文提出了一个基于主从博弈的考虑差异定价和风险管理的微网动态定价与调度策略,并构建了双层能源管理框架。上层为零售商的动态定价模型,目标是社会福利最大化;下层为多个产消者的合作博弈模型,优化各产消者的能量管理策略,各产消者之间可以进行P2P交易。
具体而言,我们将微网中的多个产消者抽象为一个多人合作博弈模型,每个产消者的策略是决定通过自身发电和购买电力的方式满足自身的能量需求,同时与其他产消者进行P2P交易。一个合理的P2P交易策略可以最小化微网总体成本,并使各个产消者获得公平和合理的利益。然而,由于每个参与者的负载差异,以及每个参与者的能源生产和存储成本不同等因素,每个参与者的收益也会不同,从而导致博弈的结果可能不理想。
为了解决这个问题,我们采用纳什谈判法对多个产消者的合作剩余进行公平分配。具体来说,我们构建了一个多变量优化模型,通过最大化纳什谈判解的稳定性来实现社会福利最大化。优化结果可以描述为一个最优博弈策略,以及各参与者的平衡价格,平衡负荷和平衡发电量。
此外,我们还考虑了运行风险,并采用条件风险价值(CVaR)随机规划方法来描述零售商的预期损失。CVaR是一个度量风险的方法,它不仅考虑了风险的大小,还考虑了风险出现的可能性。通过采用CVaR可以使得我们更好地评估微网的风险,从而制定出更加科学和合理的运营策略。
最后,我们使用MATLAB yalmip+cplex+mosek仿真平台对我们的模型进行了实验验证。结果表明,我们的模型能够有效地控制微网的运行成本,优化能源的利用效率,提高微网的经济效益和环保效益。
总之,本文提出了一个基于主从博弈的考虑差异定价和风险管理的微网动态定价与调度策略,通过构建双层能源管理框架,采用纳什谈判法和CVaR随机规划方法,实现了微网的运行优化和风险管理。我们的模型不仅可以为微网的运营提供科学的决策依据,还可以为未来微网的发展提供有益的启示。
相关代码,程序地址:http://lanzouw.top/695919430485.html