考虑需求响应的基于LSTM算法的住宅居民短期负荷预测

文章介绍了利用LSTM算法进行住宅居民短期负荷预测的方法,结合室外温度、电价和历史负荷,考虑需求响应因素。代码可在Python3.7+TensorFlow1.0环境下运行,有助于提高电力效率并节能减排。
摘要由CSDN通过智能技术生成

考虑需求响应的基于LSTM算法的住宅居民短期负荷预测
摘要:代码主要是做的是考虑住宅居民需求响应的短期负荷预测,提出了一种利用室外温度、电价以及先前负荷预测新的负荷的方法,采用的是全联通神经网络和长短期记忆网络LSTM法,他们能够学习住宅用户的电力消费模式,从而在考虑需求响应的条件下也能准确预测住宅负荷,代码在python3.7+tf1.0版本下可以运行的
本代码为文章复现,具体题目可见下图;

论文题目:基于LSTM算法的住宅居民短期负荷预测

摘要:

随着社会的发展和经济的增长,住宅的需求量逐年增加,同时住宅的电力消费量也在不断增加。在这样的背景下,短期负荷预测对于电力公司和市场管理者来说变得尤为重要。本文针对住宅居民的电力消费情况进行预测,提出了一种基于LSTM算法的短期负荷预测方法,旨在提高电力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值