考虑需求响应的基于LSTM算法的住宅居民短期负荷预测
摘要:代码主要是做的是考虑住宅居民需求响应的短期负荷预测,提出了一种利用室外温度、电价以及先前负荷预测新的负荷的方法,采用的是全联通神经网络和长短期记忆网络LSTM法,他们能够学习住宅用户的电力消费模式,从而在考虑需求响应的条件下也能准确预测住宅负荷,代码在python3.7+tf1.0版本下可以运行的
本代码为文章复现,具体题目可见下图;
论文题目:基于LSTM算法的住宅居民短期负荷预测
摘要:
随着社会的发展和经济的增长,住宅的需求量逐年增加,同时住宅的电力消费量也在不断增加。在这样的背景下,短期负荷预测对于电力公司和市场管理者来说变得尤为重要。本文针对住宅居民的电力消费情况进行预测,提出了一种基于LSTM算法的短期负荷预测方法,旨在提高电力