投影分类
按投影面分类
圆柱投影
墨卡托投影是等角投影,投影面为圆柱,用于航海等领域。
伪圆柱投影
纬线为直线,纬线之间和经线之间等距,保留了南北关系。
沿着纬线的距离不失真。
用于说明气候等依赖纬度的现象。
圆锥投影
可以相切也可以相割。
特点:在相切处的比例尺、形状和面积上都有较低的失真,沿着两条标准平行线以北的纬线或沿着两条标准纬线以南的纬线的距离被拉长;沿着标准纬线之间的纬线的距离被压缩。
方位投影
以保留的度量性质分类的投影
正形投影
保留形状和角度的投影
如墨卡托投影
等面积投影
保留面积的投影。
等距离投影
等距投影保留了一个或两个特殊点到其他所有点的距离。特殊点在投影时可能会被拉伸成一条线或一条曲线段。
- 等距圆柱投影:在赤道方向上,两极间的距离得到保留。
- 方位等距投影:中心与边缘的距离得到保留。
- 等距圆锥投影:在赤道方向上,两极间的距离得到保留。
- 维尔纳投影:在赤道方向上,与北极点的距离得到保留。
- 两点等距投影:两个“轨迹点”由地图制作者任意选取;各轨迹点间的距离得到保留。
其他投影
墨卡托投影
莫卡托投影是一种“等角正切圆柱投影”,荷兰地图学家莫卡托在1569年拟定,假设地球被围在一个中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“莫卡托投影”绘制出的地图。
莫卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。莫卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
高斯-克吕格投影
高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即可得到高斯一克吕格投影平面。
高斯一克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。高斯- 克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。
按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自 0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2 … 60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2 … 120带。我国的经度范围西起 73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、…、117°、123°、129°、135°,或三度带二十二个。
UTM 投影
UTM 投影全称为“通用横轴墨卡托投影”,是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996。UTM 投影是为了全球战争需要创建的,美国于1948年完成这种通用投影系统的计算。与高斯- 克吕格投影相似,该投影角度没有变形,中央经线为直线,且为投影的对称轴,中央经线的比例因子取0.9996是为了保证离中央经线左右约330km处有两条不失真的标准经线。 UTM 投影分带方法与高斯-克吕格投影相似,是自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。我国的卫星影像资料常采用 UTM 投影。
坐标系分类
协议地球坐标系参考:地球坐标系介绍--地心大地、地心地固直角、协议地球 坐标系_地心地固坐标系-CSDN博客
大地坐标系
PE-90系
CGCS2000坐标系
七参数坐标系变换
时间系统
GPS卫星信号结构
课件:
载波
载波有L1, L2, L5。
GPS卫星原子钟基准频率f0=10.23MHz,P码采用基准频率,C/A码仅取基准频率的1/10,而L1载波的频率f1为基准频率倍频154倍后获得,L2载波的频率f2则取基准频率f0的120倍,L5载波的频率f5则取基准频率f0的115倍。
测距码(C/A码和P码)
参考:9.2.2 GPS系统组成及原理_sc真心朋友的技术博客_51CTO博客
- 伪随机噪声码(PRN - Pseudo Random Noise):
不同的码(包括未对齐的同一组码)间的相关系数为0或1/n(n为码元数);对齐的同一组码间的相关系数为1
GPS信号中使用了伪随机码编码技术,识别和分离各颗卫星信号,并提供无模糊度的测距数据。
卫星发射一伪随机噪声码,而接收机内也产生一伪随机噪声码,且两个码序列是相同的m序列,时间也是精确同步的。
当卫星信号经过传播距离的时间延迟ح到达接收机,与本地复制码进行相关处理时,移动本地码,使相关函数达到最大值,本地码所移动的延迟值就是卫星信号的传播延迟ح(传播时间),ح乘上光速即为所测距离。
- C/A码(粗捕获码),频率为1.023MHz,周期为1ms,码长为1023,码元的宽度为293.05m,测距精度为2m到3m。
- P码(精捕获码),频率为10.23MHz,是和粗捕获码对应的测距码,其周期为7天,码长为6.1871*1012,码元周期0.097752微秒,相应码元宽度为29.3m,测距精度为0.3m。P码供军事应用,故可以对它进行密。加密后的P码称为“Y码”。
载波相位伪距测量的特点:
• 优点
– 精度高,测距精度可达0.2mm量级
• 难点
– 整周未知数问题(整周模糊度问题)
– 整周跳变问题
整周跳变
- 定义:接收机对卫星信号的跟踪中断,重新锁定时整周模糊度 𝑁0 和整数计数 𝐼𝑛𝑡(𝜑) 发生变化,称为整周跳变。
- 影响:导致观测数据不连续,影响测量精度。
导航电文(Navigation Data,也叫D码)
GNSS定位原理
基本原理:TOA(Time of Arrival),基本几何原理为三球交会原理。
- 围绕地球运转的人造卫星连续向地球表面发射经过编码调制的连续无线电信号,信号中含有卫星信号准确的发射时间,以及不同的时间卫星在空间的准确位置(由卫星运动的星历参数和历书参数描述);
- 卫星导航接收机接收卫星发出的无线电信号,测量信号的到达时间,计算卫星和用户之间的距离;用导航算法解算得到用户的位置。
- 如何确定卫星的位置
- 如何测量出站星间距离
用测距码进行定位
包含有卫星时钟与接收机时钟不同步的误差、卫星星历误差、接收机测量噪声以及测距码在大气中传播的延迟误差等等,由此求得的距离值并非真正的站星几何距离,习惯上称之为“伪距”:
相关系数:
- 采用的是CDMA(码分多址)技术(不同的PRN的相关性很低)
- 易于捕获微弱的卫星信号(频带宽,分辨率高)
- 可提高测距精度(频带宽)
- 便于对系统进行控制和管理(如AS,Anti-Spoofing抗欺骗)
利用载波相位进行定位
由于信号量测精度一般优于波长的1/100,所以载波的测量精度远远高于伪随机码。
- 精度高,测距精度可达0.1mm量级
- 整周未知数问题
- 整周跳变问题
GNSS解算过程
- PRi:第 𝑖i 颗卫星的伪距观测值。
- (𝑋𝑆𝑖,𝑌𝑆𝑖,𝑍𝑆𝑖):第 𝑖i 颗卫星的已知坐标。
- (𝑋𝑅,𝑌𝑅,𝑍𝑅):接收机的未知坐标。
- 𝑐:光速。
- 𝑑𝑇:接收机钟差(接收机时间偏差)。
几何精度衰减因子(DOP)
GNSS系统误差分析
误差来源
与卫星有关的误差
- 卫星轨道误差
- 卫星钟差
- 相对论效应
与传播途径有关的误差
- 电离层延迟
- 对流层延迟
- 多路径效应
与接收设备有关的误差
- 接收机天线相位中心的偏移和变化
- 接收机钟差
- 接收机内部噪声
误差消除方法
模型改正法
- 相对论效应
- 电离层延迟
- 对流层延迟
- 卫星钟差
限制:有些误差难以模型化。
改正后的观测值=原始观测值+模型改正
- 电离层延迟
- 对流层延迟
- 卫星轨道误差
- 电磁波干扰
- 多路径效应
卫星星历误差
星历误差对单点定位的影响主要取决于以下因素:
- 卫星到接收机的距离
- 用于定位或导航的GNSS卫星与接收机构成的几何图形
广播星历(预报星历)的精度
- 无SA(选择可用性):精度为 ±20~40米
- 有SA:精度为 ±100米
精密星历(后处理星历)的精度
- 精度可达1厘米,只提供给特许用户
卫星时钟误差
- 精密定轨(后处理)
- 相对定位或差分定位
1. GNSS测量定位与时钟误差
- GNSS测量定位是一个测时-测距系统。
- 定位精度与时钟误差密切相关。
2. 应对方法
模型改正
- 用导航电文改正卫星钟差。
- 同步误差保持在20纳秒以内。
- 等效距离误差不超过6米。
相对定位或差分定位
- 有效消除SA政策引起的星钟误差。
相对论效应对卫星钟的影响及应对方法
1. 相对论效应对卫星钟的影响
狭义相对论观点
- 飞行速度 𝑣v会导致频率变化。
广义相对论观点
- 不同引力位面导致频率变化。
- 相对论效应的影响最大可达70纳秒,对精密定位有显著影响。
2. 应对方法
综合考虑狭义相对论和广义相对论
- 为消除相对论效应,GPS卫星时钟应比地面调慢约 4.5×10−3 Hz。
电离层延迟误差
- 原因:电离层中的自由电子和正离子影响信号路径和传播速度。
- 经验模型改正
- 方法:根据以往观测结果建立的模型。
- 效果:较差。
- 双频改正
- 方法:利用双频观测值计算延迟改正或组成无电离层延迟的组合观测量。
- 效果:最好。
- 实测模型改正
- 方法:利用实际观测得到的电离层延迟建立模型。
- 效果:较好。
- 相对定位或差分定位
对流层延迟误差
- 方法:利用对流层误差修正模型。
- 问题:存在模型误差和气象元素误差。
- 利用同步观测值求差
- 相对定位或差分定位
多路径误差
- 原因:被测站附近的物体反射卫星信号,反射波与直接波干涉。
- 观测上
- 方法:选择合适的测站,避开易产生多路径的环境。
- 硬件上
- 方法:采用抗多路径误差的仪器设备。
- 数据处理上
- 方法:参数法。
重点总结
- 电离层延迟误差的应对:双频改正效果最好,实测模型改正效果较好。
- 对流层延迟误差的应对:利用误差修正模型和同步观测值求差。
- 多路径误差的应对:选择合适测站、使用抗多路径设备、数据处理采用参数法。
观测误差
- 不同GPS信号的波长和相应的观测误差:
- C/A码:波长293米,观测误差2.9米。
- P码:波长29.3米,观测误差0.3米。
- L1载波:波长0.1905米,观测误差0.002米。
- L2载波:波长0.2445米,观测误差0.0025米。
接收机的钟差
- 定义:石英钟与理想GNSS时之间的偏差和漂移。
- 应对方法:
- 作为未知数处理
- 相对定位或差分定位
- 高精度外接频标
接收机的位置偏差
- 定义:天线相位中心相对测站中心的位置偏差。
- 应对方法:
- 正确对中整平
- 强制对中装置
接收机天线相位中心偏差
- 应对方法:
- 使用相同类型天线并定向(限于相对定位)
- 模型改正