算法工程师修仙之路:Keras(十)

深度学习基础

神经网络入门


神经网络剖析

  • 训练神经网络主要围绕以下四个方面:

    • 层,多个层组合成网络(或模型);
    • 输入数据和相应的目标;
    • 损失函数,即用于学习的反馈信号;
    • 优化器,决定学习过程如何进行。
  • 网络、层、损失函数和优化器之间的关系
    在这里插入图片描述

  • 多个层链接在一起组成了网络,将输入数据映射为预测值。然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预测值与预期结果的匹配程度。优化器使用这个损失值来更新网络的权重。

层:深度学习的基础组件
  • 神经网络的基本数据结构是层。

  • 层是一个数据处理模块,将一个或多个输入张量转换为一个或多个输出张量。

  • 有些层是无状态的,但大多数的层是有状态的,即层的权重。

  • 权重是利用随机梯度下降学到的一个或多个张量,其中包含网络的知识。

  • 不同的张量格式与不同的数据处理类型需要用到不同的层。

    • 简单的向量数据保存在形状为 (samples, features) 的 2D 张量中,通常用密集连接层[densely connected layer,也叫全连接层(fully connected layer)或密集层(dense layer),对应于 Keras 的 Dense 类]来处理。
    • 序列数据保存在形状为 (samples, timesteps, features) 的 3D 张量中,通常用循环层(recurrent layer,比如 Keras 的 LSTM 层)来处理。
    • 图像数据保存在 4D 张量中,通常用二维卷积层(Keras 的 Conv2D)来处理。
  • 在 Keras 中,构建深度学习模型就是将相互兼容的多个层拼接在一起,以建立有用的数据变换流程。这里层兼容性(layer compatibility)具体指的是每一层只接受特定形状的输入张量,并返回特定形状的输出张量。

    from keras import layers
    layer = layers.Dense(32, input_shape=(784,))	# 有32个输出单元的密集层
    
    • 我们创建了一个层,只接受第一个维度大小为784的 2D 张量(第0轴是批量维度,其大小没有指定,因此可以任意取值)作为输入。
    • 这个层将返回一个张量,第一个维度的大小变成了32。因此,这个层后面只能连接一个接受32维向量作为输入的层。
  • 使用 Keras 时,你无须担心兼容性,因为向模型中添加的层都会自动匹配输入层的形状。

    from keras import models
    from keras import layers
    model = models.Sequential()
    model.add(layers.Dense(32, input_shape=(784,)))
    model.add(layers.Dense(32))
    
    • 其中第二层没有输入形状(input_shape)的参数,相反,它可以自动推导出输入形状等于上一层的输出形状。
模型:层构成的网络
  • 深度学习模型是层构成的有向无环图。最常见的例子就是层的线性堆叠,将单一输入映射为单一输出。

  • 一些常见的网络拓扑结构如下:

    • 双分支(two-branch)网络;
    • 多头(multihead)网络;
    • Inception 模块。
  • 网络的拓扑结构定义了一个假设空间(hypothesis space)。

    • 选定了网络拓扑结构,意味着将可能性空间(假设空间)限定为一系列特定的张量运算,将输入数据映射为输出数据。
    • 然后,你需要为这些张量运算的权重张量找到一组合适的值。
损失函数与优化器:配置学习过程的关键
  • 一旦确定了网络架构,你还需要选择以下两个参数:

    • 损失函数(目标函数)
      • 在训练过程中需要将其最小化。
      • 它能够衡量当前任务是否已成功完成。
    • 优化器
      • 决定如何基于损失函数对网络进行更新。
      • 它执行的是随机梯度下降(SGD)的某个变体。
  • 具有多个输出的神经网络可能具有多个损失函数(每个输出对应一个损失函数)。但是,梯度下降过程必须基于单个标量损失值。因此,对于具有多个损失函数的网络,需要将所有损失函数取平均,变为一个标量值。

  • 选择正确的目标函数对解决问题是非常重要的。网络的目的是使损失尽可能最小化,因此,如果目标函数与成功完成当前任务不完全相关,那么网络最终得到的结果可能会不符合你的预期。

  • 对于分类、回归、序列预测等常见问题,你可以遵循一些简单的指导原则来选择正确的损失函数:

    • 对于二分类问题,你可以使用二元交叉熵(binary crossentropy)损失函数;
    • 对于多分类问题,可以用分类交叉熵(categorical crossentropy)损失函数;
    • 对于回归问题,可以用均方误差(mean-squared error)损失函数;
    • 对于序列学习问题,可以用联结主义时序分类(CTC,connectionist temporal classification)损失函数。
    • 只有在面对真正全新的研究问题时,你才需要自主开发目标函数。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值