import matplotlib.pylab as plt
import seaborn as sns
from tsfresh.examples.robot_execution_failures import download_robot_execution_failures,load_robot_execution_failures
from tsfresh import extract_features, extract_relevant_features, select_features
from tsfresh.utilities.dataframe_functions import impute
from tsfresh.feature_extraction import ComprehensiveFCParameters
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import numpy as np
from pandas import Series
download_robot_execution_failures()#导入案例数据
df, y = load_robot_execution_failures()
df.head()
df[df.id ==
自动提取时序特征 tsfresh(1)
最新推荐文章于 2023-09-19 11:24:02 发布
本文介绍如何利用tsfresh库从时序数据中高效地自动提取特征,为时序分析和建模提供便利。
摘要由CSDN通过智能技术生成