-
给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。
思路一:
最容易想到的解法就是遍历所有的40多亿个整数,然后一个一个判断。但是这个需要花费的内存是多大呢?
将40亿数据保存起来(保存在数组、链表、树中),再和该数判断是否相等?
那我们来计算下需要消耗多少内存:
40亿 =4000000000
假如一个数占用一个比特位: 1Byte = 1024MB 1MB = 1024GB
1GB=1024MB =1024*1024KB=1024*1024*1024Byte
40000000000/1GB=4000000000/(1024*1024*1024) = 4G
但一个数不是占一个比特
因此:需要4*4G = 16G
要用这个方法需要消耗16G内存,若有条件限制,此方法是行不通滴!
思路二:
位图法(BitMap)
是用一个数组中的每个数据的每个二进制位表示一个数是否存在。1表示存在,0表示不存在。
相当于把数组分成很多块的空间,每一块是32个比特位。
原来32个比特位放一个数据,相当于现在一个位就可以放一个数据。16GB/32=0.5GB=512MB。
<span style="font-size:14px;">#pragma once
#include<iostream>
#include <vector>
using namespace std;
class BitMap
{
public:
BitMap(size_t range)
:_size(0)
{
_bitmap.resize((range>>5)+1);
}
void Set(size_t x)
{
size_t index = x>>5;//第几块
size_t num = x%32;//第几位
//将指定位置为一
if(!(_bitmap[index]&(1<<num)))
{
_bitmap[index] |= 1<<(num);
++_size;
}
}
void Reset(size_t x)
{
size_t index = x>>5;
size_t num = x%32;
//价格指定位置为零
if(_bitmap[index]&(1<<num))
{
_bitmap[index] &= (~(1<<num));
--_size;
}
}
bool Test(size_t x)
{
size_t index = x>>5;
size_t num = x%32;
if(_bitmap[index]&(1<<num))
{
return true;
}
return false;
}
private:
vector<size_t> _bitmap;
size_t _size;
};</span>
思路三:
布隆过滤器(BloomFilter)
它是由一个很长的二进制向量和一系列随机 映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中。那我们可以利用哈希函数计算出它具体的存放位置。
它的优点是空间效率和查询时间都远远超过一般的算法,将这40亿的数据内存由16GB变成500MB,可见其强大。
缺点是有一定的误识别率、不便于删除。布隆过滤器会出现:检测存在,而实际中却不存在。而不会出现:实际中不存在,而检测存在。
布隆过滤器原理
如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也越来越慢。
Bloom Filter 是一种空间效率很高的随机数据结构,Bloom filter 可以看做是对 bit-map 的扩展, 它的原理是:
当一个元素被加入集合时,通过 K
个Hash函数
将这个元素映射成一个位阵列(Bit array)中的 K 个点
,把它们置为1
。检索时,我们只要看看这些点是不是都是 1 就(大约)知道集合中有没有它了:
-
如果这些点有任何一个 0,则被检索元素一定不在;
-
如果都是 1,则被检索元素可能在。
如果只是空洞的说这些原理的话,肯定大家都不知道布隆过滤器有什么用处。布隆过滤器对于单机来说可能用处不是很大,但对于分布式来说就比较有用了。
如主从分布:一个数组过来,我想要知道他是不是在内存中,我们是不是需要一个一个去访问磁盘,判断数据是否存在。但是问题来了访问磁盘的速度是很慢的,所以效率会很低,如果使用布隆过滤器,我们就可以先去过滤器这个集合里面找一下对应的位置的数据是否存在。虽然布隆过滤器有他的缺陷,但是我们能够知道的是当前位置为0是肯定不存在的,如果都不存在,就不需要去访问了。
下面来讲一下布隆过滤器的缺陷:
缺陷一:误算率(False Positive)是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表,我们用多个哈希表去 存储一个数据。那么问题又来了,怎末把握使用多少呢,如果多用哈希表的话,如上面的题,一个哈希就需要500M,那么放的越多是不是越占内存啊。如果太少的话是不是误算率就高啊,所以取个适中的。下面我的实现是取了五个哈希表(没有什么根据,只是把思路展现出来一下,能够分析出取多少个,那都是大牛们弄出来的算法,我当前水平不够~)
缺陷二:如果当前位置为0肯定不存在,但是为1不一定存在。
<span style="font-size:14px;">size_t _GetnewSize(size_t _size)
{
static const int _PrimeSize = 28;
static const unsigned long _PrimeList[_PrimeSize] =
{
53ul, 97ul, 193ul, 389ul, 769ul,
1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
1610612741ul, 3221225473ul, 4294967291ul
};
for (int i = 0; i < _PrimeSize; i++)
{
if (_PrimeList[i]> _size)
{
return _PrimeList[i];
}
}
return _PrimeList[_PrimeSize - 1];
}
template<class T>
struct __HashFunc1
{
size_t BKDRHash(const char *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = hash * 131 + ch; // 也可以乘以31、131、1313、13131、131313..
}
return hash;
}
size_t operator()(const T& key)
{
return BKDRHash(key.c_str());
}
};
template<class T>
struct __HashFunc2
{
size_t SDBMHash(const char *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = 65599 * hash + ch;
//hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;
}
return hash;
}
size_t operator()(const T& key)
{
return SDBMHash(key.c_str());
}
};
template<class T>
struct __HashFunc3
{
size_t RSHash(const char *str)
{
register size_t hash = 0;
size_t magic = 63689;
while (size_t ch = (size_t)*str++)
{
hash = hash * magic + ch;
magic *= 378551;
}
return hash;
}
size_t operator()(const T& key)
{
return RSHash(key.c_str());
}
};
template<class T>
struct __HashFunc4
{
size_t JSHash(const char *str)
{
if (!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return 0;
register size_t hash = 1315423911;
while (size_t ch = (size_t)*str++)
{
hash ^= ((hash << 5) + ch + (hash >> 2));
}
return hash;
}
size_t operator()(const T& key)
{
return JSHash(key.c_str());
}
};
template<class T>
struct __HashFunc5
{
size_t DEKHash(const char* str)
{
if (!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return 0;
register size_t hash = 1315423911;
while (size_t ch = (size_t)*str++)
{
hash = ((hash << 5) ^ (hash >> 27)) ^ ch;
}
return hash;
}
size_t operator()(const T& key)
{
return DEKHash(key.c_str());
}
};</span>
BloomFilter
<span style="font-size:14px;">#include <iostream>
using namespace std;
#include<string>
#include"BitMap.h"
#include "Common.h"
template<class K = string,
class HashFunc1 = __HashFunc1<K>,
class HashFunc2 = __HashFunc2<K>,
class HashFunc3 = __HashFunc3<K>,
class HashFunc4 = __HashFunc4<K>,
class HashFunc5 = __HashFunc5<K>>
class BloomFilter
{
public:
BloomFilter(size_t size = 0)
{
_capacity = GetPrimeSize(size);
_bitMap.Resize(_capacity);
}
void Set(const K& key)
{
size_t index1 = HashFunc1()(key);
size_t index2 = HashFunc2()(key);
size_t index3 = HashFunc3()(key);
size_t index4 = HashFunc4()(key);
size_t index5 = HashFunc5()(key);
_bitMap.Set(index1%_capacity);//设置为第多少位的数,然后调用位图的Set设置成第几个字节的第几位
_bitMap.Set(index2%_capacity);
_bitMap.Set(index3%_capacity);
_bitMap.Set(index4%_capacity);
_bitMap.Set(index5%_capacity);
}
bool Test(const K& key)
{
size_t index1 = HashFunc1()(key);
if (!(_bitMap.Test(index1%_capacity)))//为1不一定存在,为0肯定不存在
return false;
size_t index2 = HashFunc2()(key);
if (!(_bitMap.Test(index2%_capacity)))
return false;
size_t index3 = HashFunc3()(key);
if (!(_bitMap.Test(index3%_capacity)))
return false;
size_t index4 = HashFunc4()(key);
if (!(_bitMap.Test(index4%_capacity)))
return false;
size_t index5 = HashFunc4()(key);
if (!(_bitMap.Test(index5%_capacity)))
return false;
return true;
}
protected:
BitMap _bitMap;
size_t _capacity;
}; </span>
测试函数;
void TestBloomFilter()
{
BlooFilter<> bf(10);
bf.Set("布隆过滤器");
bf.Test("布隆过滤器");
cout<<"存在?:"<<bf.Test("布隆过滤器")<<endl;
bf.Retset("布隆过滤器");
cout<<"存在?:"<<bf.Test("布隆过滤器")<<endl;
cout<<"存在?:"<<bf.Test("位图")<<endl;
}
int main()
{
TestBloomFilter();
system("pause");
return 0;
}