K-nn手写数字识别--Python版

本文介绍了使用Python实现K-nearest neighbors (K-nn)算法进行手写数字识别的过程。通过计算测试数据与训练数据的欧式距离,确定最近的k个邻居,并根据出现频率最高的类别进行预测。实验结果显示,该方法具有较高的正确率。
摘要由CSDN通过智能技术生成

模式识别的实验作业,弄了一个晚上终于在第二天中午弄明白了!

简单来说,k-nn就是通过计算训练集和 一个测试数据之间的欧式距离,然后将计算结果按照从小到大来排序,找出最小的k个数据,分析k个数据中哪种情况出现的频率最多,那么这个测试数据就属于这一类

  1. 思路

  2. 读入数据,假设100个训练数据,将训练数据转换为100*1024的二维数组,然后循环读入测试数据,计算测试数据和100个训练数据间的欧式距离:
    欧式距离公式
    x1-xn为单个训练数据的所有元素,y1-yn为测试数据的所有元素

    这样就得到一个数组,包含所有训练数据和测试数据的欧式距离,将距离从小到大进行排序。

3. 结果

找出k个最近的距离,看哪个数字出现的频率最多,那么这个测试数据大概率为这个数字

#解压文件
def JY():
    path="/Users/fanjialiang2401/Pycha
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值