【预测模型】一阶差分指数平滑预测算法

本文介绍了适用于直线增长趋势的时间序列预测模型——一阶差分指数平滑法,通过公式解析说明了该方法如何解决预测值滞后问题。并提供了一个具体的工业锅炉燃料消耗量预测实例,展示了一阶差分指数平滑模型的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、一阶差分指数平滑预测算法

2、试题实例求解


1、一阶差分指数平滑预测算法

当时间序列呈直线增加时,可运用一阶差分指数平滑模型来预测。其公式如下:

在前面我们已分析过,指数平滑值实际上是一种加权平均数。因此把序列中逐期增量的加权平均数(指数平滑值)加上当前值的实际数进行预测,比一次指数平滑法只用变量以往取值的加权平均数作为下一期的预测更合理。 从而使预测值始终围绕实际值上下波动,从根本上解决了在有直线增长趋势的情况下,用一次指数平滑法所得出的结果始终落后于实际值的问题。

2、试题实例求解

某工业企业 1977~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式职场

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值