rigid registration
shchojj
这个作者很懒,什么都没留下…
展开
-
简单增强
简单增强/********************************************************************************************/ float get_ostu_threshold(PTR<Image<float>> img) { float* pixels = img->get_pixels(); /*concurrency::parallel_for(0, img->get_npix(),转载 2021-02-05 17:14:21 · 141 阅读 · 0 评论 -
registration 自适应的参数评估
const ParametersType oldParameters = this->m_Transform->GetParameters(); const auto numPara = this->m_Transform->GetNumberOfParameters(); const auto numSamples = static_cast<const int>(this->m_SamplePoints.siz.转载 2020-11-02 15:11:30 · 282 阅读 · 0 评论 -
itk registration 16
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.16Model Based Registration本节介绍了几何模型与图像配准的概念。我们将这一概念称为基于模型的配准,但这可能不是最广泛的术语。该方法首先建立几何模型,并在模型中识别出若干参数。这些参数的变化使模型能够适应特定病人的形态。配准的任务是找到模型参数的最佳组合,使该模型能很好地表示图像中所包含的解.翻译 2020-10-19 18:55:47 · 381 阅读 · 0 评论 -
itk registration 15
3.15Visualizing Deformation fields3.15.1Visualizing 2D deformation fieldshttps://github.com/InsightSoftwareConsortium/ITK/blob/master/Examples/RegistrationITKv4/DeformableRegistration2.cxx#include "itkImageFileReader.h"#include "itkImageFileWr...翻译 2020-10-19 17:56:48 · 206 阅读 · 0 评论 -
itk registration 14
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.14Demons Deformable Registration针对单模可变形配准的问题,Insight Toolkit 提供了Thirion s demons算法的实现。在这个实现中,每个图像被视为一组等强度轮廓。其主要思想是,一个regular grid of forces deform通过将轮廓推向法向而使.翻译 2020-10-19 17:38:10 · 449 阅读 · 0 评论 -
itk registration 1
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.18图像配准是确定将一幅图像上的点映射到另一幅图像上的相应点的空间变换的过程。在ITK中,注册是在可插入组件的框架中执行的,这些组件可以很容易地互换。3.1 配准框架图3.2 典型的配准框架由两幅输入图像、一个变换、一个度量、一个插值器、一个优化器组成配准过程的基本输入:fixed image -f(X),翻译 2020-10-18 09:47:18 · 382 阅读 · 0 评论 -
itk registration 3
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.3注册框架的特性ITKv4配准框架:1、配准是在物理坐标中完成的。2、变换方向从virtual image空间映射到moving image空间图3.8:图像配准过程中涉及的不同坐标系。注意,被优化的变换是从virtual image的物理空间到moving图像的物理空间的一种映射。ITKv4在.翻译 2020-10-18 09:47:10 · 172 阅读 · 0 评论 -
itk registration 2
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.2 “hello world”配准https://github.com/InsightSoftwareConsortium/ITK/blob/master/Examples/RegistrationITKv4/ImageRegistration1.cxx#include "itkImageRegist..翻译 2020-10-18 09:46:50 · 369 阅读 · 2 评论 -
itk registration 4
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.4监测配准https://github.com/InsightSoftwareConsortium/ITK/blob/master/Examples/RegistrationITKv4/ImageRegistration3.cxx考虑到为特定应用程序调优配准方法所涉及的大量参数,配准过程运行几分钟却仍然产生无.翻译 2020-10-16 16:01:15 · 294 阅读 · 2 评论 -
itk registration 5
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.5多模配准基于互信息评价的度量方法能够很好地克服多模配准的困难。3.5.1Mattes Mutual Informationhttps://github.com/InsightSoftwareConsortium/ITK/blob/master/Examples/RegistrationITKv4/Ima.翻译 2020-10-16 15:58:43 · 279 阅读 · 0 评论 -
itk registration 6
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.6中心初始化ITK图像坐标原点通常位于图像的一个角上。当涉及到旋转和缩放时,这会导致反直觉的转换行为。用户倾向于假设旋转和缩放是围绕图像中心的一个固定点进行的。为了弥补预期解释中的这种差异,在工具包中引入了转换中心的概念。该参数通常是一个固定参数,在配准过程中没有进行优化,因此初始化对于获得高效准确的结果至关重要.翻译 2020-10-16 15:57:32 · 505 阅读 · 0 评论 -
itk registration 7
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.7Multi-Resolution Registration使用多分辨率方法进行图像配准被广泛用于提高速度、精度和鲁棒性。其基本思想是,首先在图像具有较少像素的粗尺度上进行配准。然后,在粗级别上确定的空间映射用于在下一个更细级别上初始化注册。这个过程不断重复,直到达到可能的最佳规模。这种由粗到细的策略极大地提高..翻译 2020-10-16 15:55:33 · 323 阅读 · 0 评论 -
itk registration 8
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.8Multi-Stage Registrationhttps://github.com/InsightSoftwareConsortium/ITK/blob/master/Examples/RegistrationITKv4/MultiStageImageRegistration1.cxx多阶段,多分辨率的..翻译 2020-10-16 15:54:30 · 368 阅读 · 0 评论 -
itk registration 9
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.9Transforms在Insight Toolkit中,itk::Transform对象封装了从输入空间到输出空间的点和向量的映射。如果变换是可逆的,反变换方法也提供。目前,ITK提供了从简单的平移、旋转和缩放到一般的仿射和内核转换的各种转换。3.9.1Geometrical Representation..翻译 2020-10-16 15:53:06 · 954 阅读 · 0 评论 -
itk registration 10
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.10Interpolators图3.40:在某种空间变换下,moving图像被映射到fixed图像空间中。迭代器遍历fixed图像,并将其坐标映射到moving图像上。在配准过程中,通常将fixed图像中的强度值与变换后的moving图像中的相应值进行比较。当一个点通过转换从一个空间映射到另一个空间时,它.翻译 2020-10-16 15:52:03 · 323 阅读 · 0 评论 -
itk registration 11
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.11Metrics在ITK中,ITK::ImageToImageMetricv4对象通过比较图像的灰度强度,定量地度量变换后的moving图像与fixed图像的匹配程度。这些metric非常灵活,可以用于任何transform或interpolation方法,不需要将灰度图像缩减为稀疏提取的信息,如边缘。me.翻译 2020-10-16 15:50:51 · 340 阅读 · 0 评论 -
itk registration 12
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.12Optimizers图3.45:optimizersv4层次结构的类图。Optimization算法被封装为ITKv4中的itk::ObjectToObjectOptimizer对象。优化器是通用的,可以用于配准以外的应用程序。在配准框架中,itk::SingleValuedNonLinearVnlO.翻译 2020-10-16 15:48:47 · 551 阅读 · 0 评论 -
itk registration 13
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.13Deformable Registration3.13.1FEM-Based Image Registrationhttps://github.com/InsightSoftwareConsortium/ITK/blob/master/Examples/RegistrationITKv4/Defo...翻译 2020-10-16 15:44:22 · 493 阅读 · 0 评论 -
计算机视觉的李代数
http://ethaneade.com/lie_groups.pdf《Lie Groups for Computer Vision》矩阵群(matrix groups):李群G(Lie group)既是光滑可微流形(manifold),也是一个群(group)。本文档设计的李群都是实矩阵群,也就是每一个元素都是实数。群的乘法和反运算和矩阵的乘法和反运算类似。因为每个群都可以由一个nxn的非奇异指定子类表示,自由度一般都不到n^2.李代数(Lie Algebra):假定李群G表示在,并且翻译 2020-09-10 19:11:15 · 878 阅读 · 0 评论 -
关于任意角度旋转
参考:http://www.brainm.com/software/pubs/math/Rotation_matrix.pdfhttp://ksuweb.kennesaw.edu/~plaval/math4490/rotgen.pdf二维坐标系旋转对应的变换假定点P是给定的齐次坐标点homogeneous coordinate,而关于任一坐标轴旋转得到对应的1、绕x轴逆时针(沿着x轴看向原点)旋转角度,,该旋转矩阵为:2、绕y轴逆时针(沿着y轴看向原点)旋转角度...翻译 2020-07-20 17:32:32 · 1622 阅读 · 0 评论 -
从旋转矩阵中提取欧拉角
https://www.gregslabaugh.net/publications/euler.pdf、、分别是x、y,z轴。每一个旋转被应用于一个世界轴,而不是一个身体轴(这说的是个啥),这里面、假设我们有一个矩阵我们要从旋转序列中提取旋转角度、、。Shoemake的代码直接求解如果非常小甚至是0,那问题就来了,这样也会变得很小,也许也是0(不就趋于),那不就不好提取了么。Shoemake根据一个很小的阈值来测试计算的值——如果它低于这个阈值,那么矩阵元素大约减少到翻译 2020-07-17 11:33:35 · 1487 阅读 · 0 评论 -
使用奇异值分解的最小二乘刚性配准方法
翻译:https://igl.ethz.ch/projects/ARAP/svd_rot.pdfLeast-Squares Rigid Motion Using SVD1、问题描述是变换空间中对应的两组点集。我们希望得到一个刚体变换是的两组点集最小二乘结果最小 ---------------------(1)其中R就是旋转矩阵,t是平移向量,w_i就是每对点的权重。2、计算平移首先假定R是固定的,求解公式就是通过对F(t)求导,t的最优解就可以知道了----..翻译 2020-07-17 10:06:00 · 1140 阅读 · 0 评论