配准
shchojj
这个作者很懒,什么都没留下…
展开
-
扩展ITKThickness3D报错了
删掉这一行。原创 2022-10-27 15:19:01 · 274 阅读 · 0 评论 -
李群和李代数
李群与李代数的理解_Eonekne的博客-CSDN博客_李群和李代数http://cjc.ict.ac.cn/online/onlinepaper/ymd-20157261151.pdfslam-14/《李群与李代数》讲义-李世雄编着.pdf at master · whydaydayup/slam-14 · GitHub李群和李代数 —— 名字听起来很猛其实也没那么复杂 - 知乎https://www.zhihu.com/question/356466246/answer/93131512转载 2022-05-29 21:25:45 · 460 阅读 · 1 评论 -
变分原理及Euler-Lagrange
浅谈变分原理 - 知乎http://jiaxuanli.me/Docs/Mathematical_Method/chpp21.pdfhttps://www.jlao.net/wp-content/uploads/2012/05/Chap4.pdf泛函数:假如点(x0, y0)和点(x1, y1)之间有一条曲线y=y(x),边界条件就是yx0=y0,yx1=y1#(1)那么曲线上两个相近点(x,y)和(x+dx, y+dy)的曲线长度近似为ds=dx2+dy2= 1+dydx2..转载 2022-05-29 21:02:13 · 914 阅读 · 0 评论 -
transformer(九)C2FViT
https://arxiv.org/pdf/2203.15216.pdf原创 2022-05-25 18:18:33 · 370 阅读 · 0 评论 -
3D slicer查看形变场
3Dslice显示数据和形变场将需要可视化的数据也导入3Dslice,注意描述为volume(图1a),如果没有显示是因为路径中不能有中文,也就是moving图像。(b)图1、数据导入形变场和将相应的形变场数据直接拖入3Dslice,并修改描述为形变场(图1b)。 点击transform菜单图2(a),然后勾选形变场可视化图2(b)。 (b)图2...原创 2021-04-15 16:08:04 · 1442 阅读 · 0 评论 -
vtk9.0编译
VTK_GROUP_ENABLE_QT设置Truecmake中配置的QT为qt5,所以要qt安装qt5并且安装msvc,因为要是用vs编译。qvtkwidget和QVTKOpenGLWidget 都不能用;但实际上使用的是QVTKOpenGLNativeWidget。VTK_LEGACY_SILENT:ON调用的时候不用设置cmake,include...转载 2021-04-08 01:18:05 · 831 阅读 · 0 评论 -
Multi-Modal Image Registration with Unsupervised Deep Learning
https://dspace.mit.edu/handle/1721.1/123142这篇论文主要是讲多模配准的两个损失函数MI和MIND,网络结构还是voxelmorph。摘要:传统的方法还是优化方法(optimization,只要是DL的方法都会这么一说),所以很慢。deep learning的方法是学习一个全局函数,加速配准过程。不过一般专注于单模配准。引言:不同的成像技术对体内组织有不同的反馈,所以才需要多模配准,来提供更多的信息。像MRI-T1可以区分脑部健康的组织,MRI翻译 2020-06-24 16:47:28 · 3312 阅读 · 8 评论 -
DEFORM-GAN:AN UNSUPERVISED LEARNING MODEL FOR DEFORMABLE REGISTRATION
https://arxiv.org/pdf/2002.11430.pdf多模配准最困难的地方:1、多模态或序列的similarity measurement,例如mutual information(MI),需要binning or quantizing,这样离散化会导致gradient vanishing,2、no ground-truth .在不同强度、噪声、模糊的数据间进行多模配准。引入了:1、gradient loss:鲁棒性更强(across sequences,以及跨模态的大翻译 2020-06-23 18:24:39 · 1110 阅读 · 0 评论 -
simpleitk 做仿射变换
忘记参考的地方是哪了def resample(image, transform):# Output image Origin, Spacing, Size, Direction are taken from the reference# image in this call to Resample reference_image = image interpolator = sitk.sitkCosineWindowedSinc default_value = -1024原创 2020-06-12 16:20:43 · 3061 阅读 · 0 评论 -
用于多模态图像配准的弱监督卷积神经网络
《Weakly-Supervised Convolutional Neural Networks for Multimodal Image Registration》摘要:在多模态图像配准的监督学习中,最基本的挑战之一是体素级空间对应的基值的缺乏。本工作描述了一种从包含在解剖标签中的高级对应信息中推断体素级变换的方法。我们认为,这种标签获取对比体素对应关系是比通过参考图像集更可靠和实用方式。典型的...翻译 2019-12-18 17:42:48 · 4357 阅读 · 0 评论 -
利用概率稠密位移网络消除深度配准与常规配准之间的差距pddNet
https://github.com/multimodallearning/pdd_netClosing the Gap between Deep and Conventional Image Registration using Probabilistic Dense Displacement Networks摘要诊断任务,手术图像引导,放射治疗以及运动分析在很大程度上依赖于准确的患...原创 2019-12-11 18:37:46 · 920 阅读 · 0 评论 -
learn2reg-离散深度学习配准
https://learn2reg.github.io/https://www.kaggle.com/adalca/learn2reghttps://github.com/learn2reg/tutorials2019https://www.kaggle.com/mattiaspaul/learn2reg-tutorialDiscrete Deep Learning Registr...原创 2019-12-11 13:47:20 · 538 阅读 · 0 评论 -
learn2reg-无监督的深度学习图像 注册:颅顶之外
https://learn2reg.github.io/https://www.kaggle.com/adalca/learn2reghttps://github.com/learn2reg/tutorials2019Unsupervised deep learning image registration: Beyond the cranial vault通过Moving+变...原创 2019-12-11 12:04:24 · 790 阅读 · 2 评论 -
learn2reg-数据融合的机遇与挑战
https://learn2reg.github.io/https://www.kaggle.com/adalca/learn2reghttps://github.com/learn2reg/tutorials2019Opportunities and Challenges for Data Fusion图像配准-MICCAI简史(2013)图像配准-MICCAI简史(20...原创 2019-12-11 11:08:56 · 494 阅读 · 0 评论 -
learn2reg-监督、弱监督和监督图像配准
https://learn2reg.github.io/https://www.kaggle.com/adalca/learn2reghttps://github.com/learn2reg/tutorials2019Supervised, weakly-supervised and supervised image registration分类Taxonomy监督学习 Sup...原创 2019-12-11 09:50:31 · 1370 阅读 · 0 评论 -
learn2reg-基于学习的无监督配准
https://learn2reg.github.io/https://www.kaggle.com/adalca/learn2reghttps://github.com/learn2reg/tutorials2019Unsupervised Learning-based Registraion配准registration成对优化Pairwise optimization...原创 2019-12-10 18:38:52 · 980 阅读 · 0 评论 -
learn2reg-配准介绍
https://learn2reg.github.io/https://github.com/learn2reg/tutorials2019Introduction to Medical Image Registration什么是医学图像配准?建立图像之间的空间关系,也称之为空间归一化spatial normalisation。图像配准关注与寻找到图像空间之间的空间变换或映射s...原创 2019-12-10 17:43:18 · 1613 阅读 · 0 评论