image registration
shchojj
这个作者很懒,什么都没留下…
展开
-
3D slicer查看形变场
3Dslice显示数据和形变场将需要可视化的数据也导入3Dslice,注意描述为volume(图1a),如果没有显示是因为路径中不能有中文,也就是moving图像。(b)图1、数据导入形变场和将相应的形变场数据直接拖入3Dslice,并修改描述为形变场(图1b)。 点击transform菜单图2(a),然后勾选形变场可视化图2(b)。 (b)图2...原创 2021-04-15 16:08:04 · 1442 阅读 · 0 评论 -
itk registration 16
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.16Model Based Registration本节介绍了几何模型与图像配准的概念。我们将这一概念称为基于模型的配准,但这可能不是最广泛的术语。该方法首先建立几何模型,并在模型中识别出若干参数。这些参数的变化使模型能够适应特定病人的形态。配准的任务是找到模型参数的最佳组合,使该模型能很好地表示图像中所包含的解.翻译 2020-10-19 18:55:47 · 381 阅读 · 0 评论 -
itk registration 15
3.15Visualizing Deformation fields3.15.1Visualizing 2D deformation fieldshttps://github.com/InsightSoftwareConsortium/ITK/blob/master/Examples/RegistrationITKv4/DeformableRegistration2.cxx#include "itkImageFileReader.h"#include "itkImageFileWr...翻译 2020-10-19 17:56:48 · 205 阅读 · 0 评论 -
itk registration 14
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.183.14Demons Deformable Registration针对单模可变形配准的问题,Insight Toolkit 提供了Thirion s demons算法的实现。在这个实现中,每个图像被视为一组等强度轮廓。其主要思想是,一个regular grid of forces deform通过将轮廓推向法向而使.翻译 2020-10-19 17:38:10 · 449 阅读 · 0 评论 -
itk registration 1
参考:https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html#x26-1740003.18图像配准是确定将一幅图像上的点映射到另一幅图像上的相应点的空间变换的过程。在ITK中,注册是在可插入组件的框架中执行的,这些组件可以很容易地互换。3.1 配准框架图3.2 典型的配准框架由两幅输入图像、一个变换、一个度量、一个插值器、一个优化器组成配准过程的基本输入:fixed image -f(X),翻译 2020-10-18 09:47:18 · 382 阅读 · 0 评论 -
Multi-Modal Image Registration with Unsupervised Deep Learning
https://dspace.mit.edu/handle/1721.1/123142这篇论文主要是讲多模配准的两个损失函数MI和MIND,网络结构还是voxelmorph。摘要:传统的方法还是优化方法(optimization,只要是DL的方法都会这么一说),所以很慢。deep learning的方法是学习一个全局函数,加速配准过程。不过一般专注于单模配准。引言:不同的成像技术对体内组织有不同的反馈,所以才需要多模配准,来提供更多的信息。像MRI-T1可以区分脑部健康的组织,MRI翻译 2020-06-24 16:47:28 · 3312 阅读 · 8 评论 -
mhd属性
https://itk.org/Wiki/ITK/MetaIO/Documentationhttps://blog.csdn.net/zyc2017/article/details/84030903ObjectType = Image #对象类型NDims = 3 #3维...转载 2019-07-20 14:57:17 · 1523 阅读 · 0 评论 -
Spatial Transformer
一、相关知识参考https://kevinzakka.github.io/2017/01/10/stn-part1/Spatial Transformer Network是一个可学习的模块,旨在以可计算和可参数化的方式增加卷积神经网络Convolutional Neural Networks的空间不变性spatial invariance。这一章节主要是为了介绍空间变换中的仿射变换af...转载 2019-07-01 09:16:16 · 2461 阅读 · 0 评论 -
spatial transformer network
转载 2019-07-01 08:53:23 · 302 阅读 · 0 评论 -
VoxelMorph
VoxelMorph摘要 之前的配准方法registration都是最优化一个目标函数optimize an objective function(每一对配准对象之间都是独立的),改论文的配准方法registration是通过定义一个参数化的函数parametric function,并且从给定的数据集中最优化该函数的参数optimize parameters。一对...转载 2019-07-01 14:47:19 · 13861 阅读 · 0 评论 -
SimpleElastix安装遇到的问题
参照https://simpleelastix.readthedocs.io/GettingStarted.html#using-visual-studiovs中c++ 编译环境要安装cmake要安装git要安装记得cmake的时候选中,要不然只有lib没有dll了。编译的时候如果出错,就将出错的部分重新编译一下。编译的路径很容易出错,最好是弄一个短一点的目录,不要有空格。...原创 2019-06-06 17:18:28 · 977 阅读 · 0 评论