HDU 5918 Sequence I kmp算法+虽然暴力也能过

Sequence I

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 211    Accepted Submission(s): 90


Problem Description
Mr. Frog has two sequences a1,a2,,an and b1,b2,,bm and a number p. He wants to know the number of positions q such that sequence b1,b2,,bm is exactly the sequence aq,aq+p,aq+2p,,aq+(m1)p where q+(m1)pn and q1 .
 

Input
The first line contains only one integer T100 , which indicates the number of test cases.

Each test case contains three lines.

The first line contains three space-separated integers 1n106,1m106 and 1p106 .

The second line contains n integers a1,a2,,an(1ai109) .

the third line contains m integers b1,b2,,bm(1bi109) .
 

Output
For each test case, output one line “Case #x: y”, where x is the case number (starting from 1) and y is the number of valid q’s.
 

Sample Input
  
  
2 6 3 1 1 2 3 1 2 3 1 2 3 6 3 2 1 3 2 2 3 1 1 2 3
 

Sample Output
  
  
Case #1: 2 Case #2: 1
 

Source
2016中国大学生程序设计竞赛(长春)-重现赛

解题思路:
1,字符串匹配,只是文本串每次移动p位而已
2,然后就是要注意,以前kmp做字符转匹配的时候,模式串的p[m]位置是有'\0'的,然而变成数组的时候
要保证p[m]=0即可,也就是要memset模式串。
3,其实这题数据非常的水,当时暴力n^2的复杂度都能过。(不知道后来数据会不会加强)

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1000005 ;
int f[maxn] ;
int a[maxn] ;
int b[maxn] ;
int n,m,pp;
int ans ;
void find(int st,int *T,int *P){
    int j = 0 ;
    for(int i=st;i<n;i+=pp){
        while(j&&P[j]!=T[i]){j = f[j];}
        if(P[j]==T[i])j++ ;
        if(j==m){
            ans++ ;
            //j = 0 ;
        }
    }
}
void getfail(int *p){
    f[0] = 0 ;
    f[1] = 0 ;
    for(int i=1;i<m;i++){
        int j = f[i] ;
        while(j&&p[i]!=p[j])j = f[j] ;
        f[i+1] = (p[i]==p[j] ? j+1 : 0) ;
    }
}
int main(){
    int T,cas=1;
    scanf("%d",&T);
    while(T--){
        ans = 0 ;
        scanf("%d%d%d",&n,&m,&pp);
        memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
        for(int i=0;i<n;i++)scanf("%d",&a[i]);
        for(int i=0;i<m;i++)scanf("%d",&b[i]);
        //b[m]=0;
        getfail(b) ;
        for(int i=0;i<pp;i++){
            find(i,a,b);
        }
        printf("Case #%d: %d\n",cas++,ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值