降维方法:PCA、SVD、LDA、LLE

参考文献:

1.SVD原理与在降维中的应用
2.PCA和SVD傻傻分不清楚?
3.线性代数中,特征值与特征向量在代数和几何层面的实际意义是什么?
4.线性判别分析(Linear Discriminant Analysis)(一)


前提:降维的客观必要性

在这里插入图片描述
简而言之,这里的分析反映出,高维数据普遍分布较为稀疏,这使得由此直接训练出来的模型将会有很高的风险出现过拟合。因此降维操作并不仅仅从计算量和简化问题的角度考虑的,降维操作本身对于模型泛化能力的提高也是很有必要的。

降维带来的效果:

1.从直接效果来说,当然是降低数据维度,便于计算和加速训练;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值