在医学影像领域,一张清晰的图像可能意味着早期肿瘤的发现、手术方案的精准制定,甚至生命的挽救。然而,受限于设备成本、辐射剂量或采集时间,原始数据往往存在噪声、伪影或分辨率不足的问题。图像重建与后处理算法,正是解决这些挑战的核心技术。本文将深入解析其原理、主流方法及前沿进展。
一、为什么需要图像重建与后处理?
以CT(计算机断层扫描)为例,设备采集的原始数据并非直接可见的图像,而是X射线穿过人体后的投影信号(类似阴影轮廓)。重建算法的任务是将这些“阴影”逆向还原为人体横断面图像。但这一过程面临两大难题:
- 数据不完备性:减少扫描角度或辐射剂量会导致信息缺失(如稀疏投影);
- 噪声干扰:低剂量CT中光子计数不足,噪声显著增加。
后处理算法则进一步优化重建后的图像,例如去除金属植入物产生的条纹伪影,或增强微小病灶的对比度。