EEG数据预处理后的分析方法

当我们做完EEG数据预处理后,我们还能做哪些数据方法上的分析?

图片

——来源胡理老师PPT,仅用于学习分享

上图是来自胡老师在一次线上讲课的截图,可以看出对于不论是静息态还是任务态的数据来说,EEG数据预处理是必备的步骤,但后续的分析过程则是可以进行选择的。

第一个:Event-related potentials 又名(ERP)

此分析也是使用EEG设备最常进行的数据分析方法,顾名思义,它是与事件相关的分析方法,

定义:凡是外加一种特定的刺激,作用于感觉系统或脑的某一部位,在给予刺激或者撤销刺激时,在脑区所引起的电位变化

特性:潜伏期恒定,波形恒定;与此相对,自发脑电则是随机变化的。

主要成分:潜伏期:早(10ms以内),中(10到50ms),晚成(50到500ms)。

具体详情介绍可以参考我之前发过的文章《一文了解EEG/ERP的基础知识

图片

第二个:Spectral analysis(频谱分析)

一般来说,频谱分析是将信号做傅里叶变换从而进行分析的。傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。简单一点来说,就是将原始的时域信号通过傅里叶变换转为为频域的信号,来看大脑频带的激活情况,寻找特征值来统计说明其活动状态。

可参考链接:

EEG频谱分析(基于BP — Analyzer2软件)

图片

第三个:Time-frequency analysis(时频分析)

时频分析是在频谱分析的基础上建立的新的分析方法,它不仅包括频域的信息,也能包括随时间变化的信号。时频分析(TF)通过分离大脑不同频率上功率和相位信息,可以更好地表征EEG数据中包含的神经元振荡信息。

可参考链接:

时频分析之小波教程(推荐书籍)

图片

第四个:Blind source separation(盲源分离)

盲源分离(blind source separation,BSS)是在不需要源信号的先验信息或很少信息与混合过程的条件下,对混合信号(观测信号)进行源信号估计的一种方法。常见的分离方法有:主成分分析(principal component analysis,PCA)和独立成分分析(independent component analysis,ICA)。

可参考链接:

独立成分分析(ICA)

图片

第五个:Microstate analysis(微状态分析)

微状态分析(Microstate analysis)是用多通道电极的地形图拓扑结构定义状态的方法。每种微状态会表征不同的头皮空间分布,对不同的微状态过程进行分析能获取不同的EEG信息。

可参考链接:

EEG数据的微状态分析教程

第六个:Source analysis(源分析)

脑电溯源定位,即脑电逆向问题,概括的说就是:根据头表测量电位信号,反演估计脑内神经活动源的位置、方向和强度信息。

可参考链接:

EEG源分析思考总结

第七个:connectivity analysis(连通性分析)

EEG连通性是指包括两个或多个EEG电极点上的信号之间的统计上显著的同步性。通常看到的有两类连接:1)有效连接:这种方法试图确定从一个电极到另一个电极信息传递的因果关系。即,如果一个脑区在时间上先于另一个脑区激活。2)功能连接:这是双向连接,不能确定因果关系。即,两个脑区共享同一个活动,表明这两个脑区是相连的。进行这类分析的也有很多的工具箱可供选择。

可参考链接:

功能连接能使用的工具箱

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值